Nothing
# Get test curves to use
source('one_curve_c4_aci.R')
# Load helping function
source('get_duplicated_colnames.R')
# Choose test tolerance
TOLERANCE <- 1e-4
test_that('fit failures are handled properly', {
# Set a seed before fitting since there is randomness involved with the
# default optimizer
set.seed(1234)
fit_res_bad <- expect_silent(
fit_c4_aci(
one_curve_bad,
Ca_atmospheric = 420,
optim_fun = optimizer_nmkb(1e-7),
hard_constraints = 2,
calculate_confidence_intervals = TRUE,
remove_unreliable_param = 2
)
)
expect_equal(unique(fit_res_bad$fits[, 'c4_assimilation_msg']), 'PCm must be >= 0')
expect_equal(fit_res_bad$parameters[, 'c4_assimilation_msg'], 'PCm must be >= 0')
expect_true(all(is.na(fit_res_bad$fits[, c('A_fit', 'Apr', 'Apc', 'Ar')])))
expect_true(all(is.na(fit_res_bad$fits_interpolated[, c('An', 'Apr', 'Apc', 'Ar')])))
expect_true(all(is.na(fit_res_bad$parameters[, c('Vcmax_at_25', 'Vpmax_at_25', 'RL_at_25', 'AIC')])))
expect_true(all(is.na(fit_res_bad$parameters[, c('Vcmax_at_25_upper', 'Vpmax_at_25_upper', 'RL_at_25_upper')])))
})
test_that('PCm limits can be bypassed', {
# Set a seed before fitting since there is randomness involved with the
# default optimizer
set.seed(1234)
fit_res <- expect_silent(
fit_c4_aci(
one_curve_bad,
Ca_atmospheric = 420,
optim_fun = optimizer_nmkb(1e-7),
hard_constraints = 0,
calculate_confidence_intervals = TRUE,
remove_unreliable_param = 2
)
)
expect_equal(unique(fit_res$fits[, 'c4_assimilation_msg']), '')
expect_equal(fit_res$parameters[, 'c4_assimilation_msg'], '')
expect_true(all(!is.na(fit_res$fits[, c('A_fit')])))
})
test_that('fit results have not changed (Vcmax)', {
# Set a seed before fitting since there is randomness involved with the
# default optimizer
set.seed(1234)
fit_res <- fit_c4_aci(
one_curve,
Ca_atmospheric = 420,
fit_options = list(Vcmax_at_25 = 'fit', Vpr = 1000, J_at_25 = 1000),
optim_fun = optimizer_nmkb(1e-7),
hard_constraints = 2,
calculate_confidence_intervals = TRUE,
remove_unreliable_param = 2
)
expect_equal(
get_duplicated_colnames(fit_res$fits),
character(0)
)
expect_equal(
get_duplicated_colnames(fit_res$parameters),
character(0)
)
expect_equal(
as.numeric(fit_res$parameters[1, c('Vcmax_at_25', 'Vpmax_at_25', 'RL_at_25', 'AIC', 'TleafCnd_avg')]),
c(3.630116e+01, 1.804791e+02, 1.069116e-08, 8.226640e+01, 3.030823e+01),
tolerance = TOLERANCE
)
expect_equal(
as.numeric(fit_res$parameters[1, c('Vcmax_at_25_upper', 'Vpmax_at_25_upper', 'RL_at_25_upper')]),
c(38.434695, 214.046523, 1.568026),
tolerance = TOLERANCE
)
expect_equal(
as.numeric(fit_res$parameters[1, c('operating_Ci', 'operating_PCm', 'operating_An', 'operating_An_model')]),
c(183.48393, 146.19627, 52.35755, 56.54244),
tolerance = TOLERANCE
)
expect_equal(
as.numeric(fit_res$parameters[1, c('npts', 'nparam', 'dof')]),
c(13, 3, 10)
)
expect_equal(
as.numeric(fit_res$parameters[1, c('Vpmax_trust', 'Vcmax_trust', 'Vpr_trust', 'J_trust')]),
c(2, 2, 0, 0)
)
})
test_that('fit results have not changed (Vpr)', {
# Set a seed before fitting since there is randomness involved with the
# default optimizer
set.seed(1234)
fit_res <- fit_c4_aci(
one_curve,
Ca_atmospheric = 420,
fit_options = list(Vcmax_at_25 = 1000, Vpr = 'fit', J_at_25 = 1000),
optim_fun = optimizer_nmkb(1e-7),
hard_constraints = 2,
calculate_confidence_intervals = TRUE,
remove_unreliable_param = 2
)
expect_equal(
get_duplicated_colnames(fit_res$fits),
character(0)
)
expect_equal(
get_duplicated_colnames(fit_res$parameters),
character(0)
)
expect_equal(
as.numeric(fit_res$parameters[1, c('Vpr', 'Vpmax_at_25', 'RL_at_25', 'AIC')]),
c(58.1503, 133.8474, 0.0000, 88.3427),
tolerance = TOLERANCE
)
expect_equal(
as.numeric(fit_res$parameters[1, c('Vpr_upper', 'Vpmax_at_25_upper', 'RL_at_25_upper')]),
c(62.43, 156.94, 2.76),
tolerance = TOLERANCE
)
expect_equal(
as.numeric(fit_res$parameters[1, c('npts', 'nparam', 'dof')]),
c(13, 3, 10)
)
expect_equal(
as.numeric(fit_res$parameters[1, c('Vpmax_trust', 'Vcmax_trust', 'Vpr_trust', 'J_trust')]),
c(2, 1, 2, 0)
)
})
test_that('fit results have not changed (J)', {
# Set a seed before fitting since there is randomness involved with the
# default optimizer
set.seed(1234)
fit_res <- fit_c4_aci(
one_curve,
Ca_atmospheric = 420,
fit_options = list(Vcmax_at_25 = 1000, Vpr = 1000, J_at_25 = 'fit'),
optim_fun = optimizer_nmkb(1e-7),
hard_constraints = 2,
calculate_confidence_intervals = TRUE,
remove_unreliable_param = 2
)
fit_res$parameters <- calculate_temperature_response(
fit_res$parameters,
jmax_temperature_param_bernacchi,
'TleafCnd_avg'
)
fit_res$parameters <- calculate_jmax(
fit_res$parameters,
0.6895,
0.97875
)
expect_equal(
get_duplicated_colnames(fit_res$fits),
character(0)
)
expect_equal(
get_duplicated_colnames(fit_res$parameters),
character(0)
)
expect_equal(
as.numeric(fit_res$parameters[1, c('J_at_25', 'Vpmax_at_25', 'RL_at_25', 'AIC', 'Jmax_at_25')]),
c(258.1464, 135.7058, 0.0000, 88.6061, 259.4098),
tolerance = TOLERANCE
)
expect_equal(
as.numeric(fit_res$parameters[1, c('J_at_25_upper', 'Vpmax_at_25_upper', 'RL_at_25_upper', 'Jmax_at_25_upper')]),
c(275.66, 157.25, 2.35, 277.121056),
tolerance = TOLERANCE
)
expect_equal(
as.numeric(fit_res$parameters[1, c('npts', 'nparam', 'dof')]),
c(13, 3, 10)
)
expect_equal(
as.numeric(fit_res$parameters[1, c('Vpmax_trust', 'Vcmax_trust', 'Vpr_trust', 'J_trust')]),
c(2, 1, 0, 2)
)
})
test_that('fit results have not changed (gmc with temperature dependence)', {
# Set a seed before fitting since there is randomness involved with the
# default optimizer
set.seed(1234)
fit_res <- fit_c4_aci(
one_curve,
Ca_atmospheric = 420,
fit_options = list(gmc_at_25 = 'fit'),
optim_fun = optimizer_nmkb(1e-7),
hard_constraints = 2,
calculate_confidence_intervals = TRUE,
remove_unreliable_param = 2
)
expect_equal(
get_duplicated_colnames(fit_res$fits),
character(0)
)
expect_equal(
get_duplicated_colnames(fit_res$parameters),
character(0)
)
expect_equal(
as.numeric(fit_res$parameters[1, c('Vcmax_at_25', 'Vpmax_at_25', 'RL_at_25', 'gmc_at_25', 'AIC')]),
c(42.177755, 114.264158, 3.029476, 9.999997, 75.003441),
tolerance = TOLERANCE
)
expect_equal(
as.numeric(fit_res$parameters[1, c('Vcmax_at_25_upper', 'Vpmax_at_25_upper', 'RL_at_25_upper', 'gmc_at_25_upper')]),
c(43.925521, 124.343968, 4.295661, Inf),
tolerance = TOLERANCE
)
expect_equal(
as.numeric(fit_res$parameters[1, c('Vcmax_tl_avg', 'Vpmax_tl_avg', 'RL_tl_avg', 'gmc_tl_avg')]),
c(73.155628, 162.740193, 4.841121, 14.212310),
tolerance = TOLERANCE
)
expect_equal(
as.numeric(fit_res$parameters[1, c('Vcmax_tl_avg_lower', 'Vpmax_tl_avg_lower', 'RL_tl_avg_lower', 'gmc_tl_avg_lower')]),
c(70.179640, 149.671916, 2.812345, 4.772084),
tolerance = TOLERANCE
)
expect_equal(
as.numeric(fit_res$parameters[1, c('npts', 'nparam', 'dof')]),
c(13, 4, 9)
)
expect_equal(
as.numeric(fit_res$parameters[1, c('Vpmax_trust', 'Vcmax_trust', 'Vpr_trust', 'J_trust')]),
c(2, 2, 0, 0)
)
})
test_that('removing and excluding points produce the same fit results', {
pts_to_remove <- c(3, 5, 13)
one_curve_remove <- remove_points(
one_curve,
list(seq_num = pts_to_remove),
method = 'remove'
)
one_curve_exclude <- remove_points(
one_curve,
list(seq_num = pts_to_remove),
method = 'exclude'
)
expect_equal(nrow(one_curve_remove), 10)
expect_equal(nrow(one_curve_exclude), 13)
# Set a seed before fitting since there is randomness involved with the
# default optimizer
set.seed(1234)
fit_res_remove <- fit_c4_aci(
one_curve_remove,
Ca_atmospheric = 420,
optim_fun = optimizer_nmkb(1e-7)
)
set.seed(1234)
fit_res_exclude <- fit_c4_aci(
one_curve_exclude,
Ca_atmospheric = 420,
optim_fun = optimizer_nmkb(1e-7)
)
# Check that results haven't changed
expect_equal(
as.numeric(fit_res_remove$parameters[1, c('Vcmax_at_25', 'Vpmax_at_25', 'RL_at_25', 'AIC')]),
c(37.01, 211.08, 0.70, 59.67),
tolerance = TOLERANCE
)
expect_equal(
as.numeric(fit_res_remove$parameters[1, c('npts', 'nparam', 'dof')]),
c(10, 3, 7)
)
expect_equal(
as.numeric(fit_res_remove$parameters[1, c('RSS', 'RMSE')]),
c(102.677, 3.204),
tolerance = TOLERANCE
)
# Check that remove/exclude results are the same
expect_equal(
as.numeric(fit_res_remove$parameters[1, c('Vcmax_at_25', 'Vpmax_at_25', 'RL_at_25', 'AIC')]),
as.numeric(fit_res_exclude$parameters[1, c('Vcmax_at_25', 'Vpmax_at_25', 'RL_at_25', 'AIC')]),
tolerance = TOLERANCE
)
expect_equal(
as.numeric(fit_res_remove$parameters[1, c('npts', 'nparam', 'dof')]),
as.numeric(fit_res_exclude$parameters[1, c('npts', 'nparam', 'dof')])
)
expect_equal(
as.numeric(fit_res_remove$parameters[1, c('RSS', 'RMSE')]),
as.numeric(fit_res_exclude$parameters[1, c('RSS', 'RMSE')]),
tolerance = TOLERANCE
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.