Nothing
# Get test curves to use
source('one_curve_c4_aci.R')
# Load helping function
source('get_duplicated_colnames.R')
# Choose test tolerance
TOLERANCE <- 1e-4
test_that('fit failures are handled properly', {
# Set a seed before fitting since there is randomness involved with the
# default optimizer
set.seed(1234)
fit_res_bad <- expect_silent(
fit_c4_aci_hyperbola(
one_curve_bad,
optim_fun = optimizer_nmkb(1e-7),
hard_constraints = 2,
calculate_confidence_intervals = TRUE
)
)
expect_equal(unique(fit_res_bad$fits[, 'c4_assimilation_hyperbola_msg']), 'Ci must be >= 0')
expect_equal(fit_res_bad$parameters[, 'c4_assimilation_hyperbola_msg'], 'Ci must be >= 0')
expect_true(all(is.na(fit_res_bad$fits[, c('A_fit', 'Ainitial', 'Amax')])))
expect_true(all(is.na(fit_res_bad$fits_interpolated[, c('An', 'Ainitial', 'Amax')])))
expect_true(all(is.na(fit_res_bad$parameters[, c('c4_curvature', 'c4_slope', 'rL', 'Vmax', 'AIC')])))
expect_true(all(is.na(fit_res_bad$parameters[, c('c4_curvature_upper', 'c4_slope_upper', 'rL_upper', 'Vmax_upper')])))
})
test_that('Ci limits can be bypassed', {
# Set a seed before fitting since there is randomness involved with the
# default optimizer
set.seed(1234)
fit_res <- expect_silent(
fit_c4_aci_hyperbola(
one_curve_bad,
optim_fun = optimizer_nmkb(1e-7),
hard_constraints = 0,
calculate_confidence_intervals = TRUE
)
)
expect_equal(unique(fit_res$fits[, 'c4_assimilation_hyperbola_msg']), '')
expect_equal(fit_res$parameters[, 'c4_assimilation_hyperbola_msg'], '')
expect_true(all(!is.na(fit_res$fits[, c('A_fit')])))
})
test_that('fit results have not changed', {
# Set a seed before fitting since there is randomness involved with the
# default optimizer
set.seed(1234)
fit_res <- fit_c4_aci_hyperbola(
one_curve,
optim_fun = optimizer_nmkb(1e-7),
hard_constraints = 2,
calculate_confidence_intervals = TRUE
)
expect_equal(
get_duplicated_colnames(fit_res$fits),
character(0)
)
expect_equal(
get_duplicated_colnames(fit_res$parameters),
character(0)
)
expect_equal(
as.numeric(fit_res$parameters[1, c('c4_curvature', 'c4_slope', 'rL', 'Vmax', 'AIC')]),
c(0.697636, 1.010108, 1.322194, 65.126933, 74.003838),
tolerance = TOLERANCE
)
expect_equal(
as.numeric(fit_res$parameters[1, c('c4_curvature_upper', 'c4_slope_upper', 'rL_upper', 'Vmax_upper')]),
c(0.8047086, 1.1376861, 2.8630977, 67.7229577),
tolerance = TOLERANCE
)
expect_equal(
as.numeric(fit_res$parameters[1, c('npts', 'nparam', 'dof')]),
c(13, 4, 9)
)
})
test_that('removing and excluding points produce the same fit results', {
pts_to_remove <- c(3, 5, 13)
one_curve_remove <- remove_points(
one_curve,
list(seq_num = pts_to_remove),
method = 'remove'
)
one_curve_exclude <- remove_points(
one_curve,
list(seq_num = pts_to_remove),
method = 'exclude'
)
expect_equal(nrow(one_curve_remove), 10)
expect_equal(nrow(one_curve_exclude), 13)
# Set a seed before fitting since there is randomness involved with the
# default optimizer
set.seed(1234)
fit_res_remove <- fit_c4_aci_hyperbola(
one_curve_remove,
optim_fun = optimizer_nmkb(1e-7)
)
set.seed(1234)
fit_res_exclude <- fit_c4_aci_hyperbola(
one_curve_exclude,
optim_fun = optimizer_nmkb(1e-7)
)
# Check that results haven't changed
expect_equal(
as.numeric(fit_res_remove$parameters[1, c('c4_curvature', 'c4_slope', 'rL', 'Vmax', 'AIC')]),
c(0.657, 1.205, 3.004, 67.773, 53.612),
tolerance = TOLERANCE
)
expect_equal(
as.numeric(fit_res_remove$parameters[1, c('npts', 'nparam', 'dof')]),
c(10, 4, 6)
)
expect_equal(
as.numeric(fit_res_remove$parameters[1, c('RSS', 'RMSE')]),
c(45.874, 2.142),
tolerance = TOLERANCE
)
# Check that remove/exclude results are the same
expect_equal(
as.numeric(fit_res_remove$parameters[1, c('c4_curvature', 'c4_slope', 'rL', 'Vmax', 'AIC')]),
as.numeric(fit_res_exclude$parameters[1, c('c4_curvature', 'c4_slope', 'rL', 'Vmax', 'AIC')]),
tolerance = TOLERANCE
)
expect_equal(
as.numeric(fit_res_remove$parameters[1, c('npts', 'nparam', 'dof')]),
as.numeric(fit_res_exclude$parameters[1, c('npts', 'nparam', 'dof')])
)
expect_equal(
as.numeric(fit_res_remove$parameters[1, c('RSS', 'RMSE')]),
as.numeric(fit_res_exclude$parameters[1, c('RSS', 'RMSE')]),
tolerance = TOLERANCE
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.