calc_ofv_and_grad | R Documentation |
Compute an objective function and gradient with respect to the optimization parameters.
This function can be passed to the Broyden Fletcher Goldfarb Shanno (BFGS)
method for nonlinear minimization with box constraints implemented in bfgsb_min
.
calc_ofv_and_grad(
x,
optxt,
opta,
model_switch,
aa,
axt,
groupsize,
ni,
xtopto,
xopto,
aopto,
bpop,
d,
sigma,
docc_full,
poped.db,
only_fim = FALSE
)
x |
A matrix for the discrete design variables. Each row is a group. |
optxt |
If sampling times are optimized |
opta |
If continuous design variables are optimized |
model_switch |
A matrix that is the same size as xt, specifying which model each sample belongs to. |
aa |
The aa value |
axt |
the axt value |
groupsize |
A vector of the number of individuals in each group. |
ni |
A vector of the number of samples in each group. |
xtopto |
the xtopto value |
xopto |
the xopto value |
aopto |
the aopto value |
bpop |
Matrix defining the fixed effects, per row (row number = parameter_number) we should have:
Can also just supply the parameter values as a vector |
d |
Matrix defining the diagonals of the IIV (same logic as for the fixed effects
matrix bpop to define uncertainty). One can also just supply the parameter values as a |
sigma |
Matrix defining the variances can covariances of the residual variability terms of the model.
can also just supply the diagonal parameter values (variances) as a |
docc_full |
A between occasion variability matrix. |
poped.db |
A PopED database. |
only_fim |
Should the gradient be calculated? |
A list containing:
f |
The objective function. |
g |
The gradient. |
Other Optimize:
Doptim()
,
LEDoptim()
,
RS_opt()
,
a_line_search()
,
bfgsb_min()
,
calc_autofocus()
,
mfea()
,
optim_ARS()
,
optim_LS()
,
poped_optim()
,
poped_optim_1()
,
poped_optim_2()
,
poped_optim_3()
,
poped_optimize()
library(PopED)
############# START #################
## Create PopED database
## (warfarin model for optimization)
#####################################
## Warfarin example from software comparison in:
## Nyberg et al., "Methods and software tools for design evaluation
## for population pharmacokinetics-pharmacodynamics studies",
## Br. J. Clin. Pharm., 2014.
## Optimization using an additive + proportional reidual error
## to avoid sample times at very low concentrations (time 0 or very late samples).
## find the parameters that are needed to define from the structural model
ff.PK.1.comp.oral.sd.CL
## -- parameter definition function
## -- names match parameters in function ff
sfg <- function(x,a,bpop,b,bocc){
parameters=c(CL=bpop[1]*exp(b[1]),
V=bpop[2]*exp(b[2]),
KA=bpop[3]*exp(b[3]),
Favail=bpop[4],
DOSE=a[1])
return(parameters)
}
## -- Define initial design and design space
poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL,
fg_fun=sfg,
fError_fun=feps.add.prop,
bpop=c(CL=0.15, V=8, KA=1.0, Favail=1),
notfixed_bpop=c(1,1,1,0),
d=c(CL=0.07, V=0.02, KA=0.6),
sigma=c(prop=0.01,add=0.25),
groupsize=32,
xt=c( 0.5,1,2,6,24,36,72,120),
minxt=0.01,
maxxt=120,
a=c(DOSE=70),
mina=c(DOSE=0.01),
maxa=c(DOSE=100))
############# END ###################
## Create PopED database
## (warfarin model for optimization)
#####################################
opta=TRUE
aa=opta*poped.db$settings$cfaa*matrix(1,poped.db$design$m,size(poped.db$design$a,2))
aa
optxt=TRUE
axt=optxt*poped.db$settings$cfaxt*matrix(1,poped.db$design$m,max(poped.db$design_space$maxni))
axt
calc_ofv_and_grad(x=c(poped.db$design$xt,poped.db$design$a),
optxt=optxt, opta=opta,
model_switch=poped.db$design$model_switch,
aa=aa,
axt=axt,
groupsize=poped.db$design$groupsize,
ni=poped.db$design$ni,
xtopto=poped.db$design$xt,
xopto=poped.db$design$x,
aopto=poped.db$design$a,
bpop=poped.db$parameters$param.pt.val$bpop,
d=poped.db$parameters$param.pt.val$d,
sigma=poped.db$parameters$param.pt.val$sigma,
docc_full=poped.db$parameters$param.pt.val$docc,
poped.db,
only_fim=FALSE)
## Not run:
# BFGS search, DOSE and sample time optimization
bfgs.output <- poped_optimize(poped.db,opt_xt=1,opt_a=1,
bUseRandomSearch= 0,
bUseStochasticGradient = 0,
bUseBFGSMinimizer = 1,
bUseLineSearch = 0)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.