wassermann: Partial Mantel tests on costdistance matrices

View source: R/wassermann.r

wassermannR Documentation

Partial Mantel tests on costdistance matrices

Description

This function implements the Causal modelling approach as suggested by Wassermann et al. 2010 and Cushman et al. 2010. It tests for the effect of landscape features using a cost distance matrix on the genetic structure of subpopulation/individuals.

Usage

wassermann(gen.mat, cost.mats, eucl.mat = NULL, plot = TRUE, nperm = 999)

Arguments

gen.mat

pairwise genetic distance matrix

cost.mats

pairwise cost distance matrix

eucl.mat

pairwise Eukclidean distance matrix

plot

switch for control plots of the partial mantel test

nperm

number of permutations for the partial mantel test

Details

see landgenreport

Value

A table with the results of the partial mantel test. Using plot=TRUE results in diagnostic plots for the partial mantel tests.

Author(s)

Bernd Gruber (bernd.gruber@canberra.edu.au)

References

Wassermann, T.N., Cushman, S. A., Schwartz, M. K. and Wallin, D. O. (2010). Spatial scaling and multi-model inference in landscape genetics: Martes americana in northern Idaho. Landscape Ecology, 25(10), 1601-1612.

See Also

popgenreport, genleastcost, landgenreport, lgrMMRR

Examples



library(raster)
fric.raster <- readRDS(system.file("extdata","fric.raster.rdata", package="PopGenReport"))
glc <- genleastcost(landgen, fric.raster, "D", NN=8)
wassermann(eucl.mat = glc$eucl.mat, cost.mats = glc$cost.mats, gen.mat = glc$gen.mat)


PopGenReport documentation built on Oct. 11, 2023, 9:07 a.m.