| wassermann | R Documentation | 
This function implements the Causal modelling approach as suggested by Wassermann et al. 2010 and Cushman et al. 2010. It tests for the effect of landscape features using a cost distance matrix on the genetic structure of subpopulation/individuals.
wassermann(gen.mat, cost.mats, eucl.mat = NULL, plot = TRUE, nperm = 999)
gen.mat | 
 pairwise genetic distance matrix  | 
cost.mats | 
 pairwise cost distance matrix  | 
eucl.mat | 
 pairwise Eukclidean distance matrix  | 
plot | 
 switch for control plots of the partial mantel test  | 
nperm | 
 number of permutations for the partial mantel test  | 
see landgenreport
A table with the results of the partial mantel test. Using plot=TRUE results in diagnostic plots for the partial mantel tests.
Bernd Gruber (bernd.gruber@canberra.edu.au)
Wassermann, T.N., Cushman, S. A., Schwartz, M. K. and Wallin, D. O. (2010). Spatial scaling and multi-model inference in landscape genetics: Martes americana in northern Idaho. Landscape Ecology, 25(10), 1601-1612.
popgenreport, genleastcost,
landgenreport, lgrMMRR
library(raster)
fric.raster <- readRDS(system.file("extdata","fric.raster.rdata", package="PopGenReport"))
glc <- genleastcost(landgen, fric.raster, "D", NN=8)
wassermann(eucl.mat = glc$eucl.mat, cost.mats = glc$cost.mats, gen.mat = glc$gen.mat)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.