Nothing
#' Function working as testbench for comparison of Prediction algorithms
#'
#' @param dataIn as input time series for testing
#' @param nextVal as an integer to decide number of values to predict
#' @param errorParameter as type of error calculation (RMSE, MAE or MAPE)
#' @param MethodPath as location of function for the proposed imputation method
#' @param MethodName as name for function for the proposed imputation method
#' @import ggplot2
#' @import forecast
#' @import PSF
#' @importFrom imputeTestbench mape mae rmse
#' @importFrom stats ts
#' @importFrom methods hasArg
#' @return Returns error comparison for imputation methods
#' @export
#' @examples
#' # aa <- prediction_errors(nextVal = 10)
#' # aa
#==================================================================================
# prediction_errors starts here....
#==================================================================================
prediction_errors <- function(dataIn, nextVal, errorParameter, MethodPath, MethodName)
{
options(warn=-1)
if(!(hasArg(dataIn)))
{
# dataIn <- c(1:5,1:5,1:5,1:5,1:5,1:5,1:5,1:5,1:5,1:5,1:5,1:5,1:5,1:5,1:5,1:5,1:5,1:5,1:5,1:5)
# dataIn <- nottem
dataIn <- c(40.6, 40.8, 44.4, 46.7, 54.1, 58.5, 57.7, 56.4, 54.3, 50.5, 42.9, 39.8, 44.2, 39.8, 45.1, 47.0, 54.1, 58.7, 66.3,
59.9, 57.0, 54.2, 39.7, 42.8, 37.5, 38.7, 39.5, 42.1, 55.7, 57.8, 56.8, 54.3, 54.3, 47.1, 41.8, 41.7, 41.8, 40.1,
42.9, 45.8, 49.2, 52.7, 64.2, 59.6, 54.4, 49.2, 36.3, 37.6, 39.3, 37.5, 38.3, 45.5, 53.2, 57.7, 60.8, 58.2, 56.4,
49.8, 44.4, 43.6, 40.0, 40.5, 40.8, 45.1, 53.8, 59.4, 63.5, 61.0, 53.0, 50.0, 38.1, 36.3, 39.2, 43.4, 43.4, 48.9,
50.6, 56.8, 62.5, 62.0, 57.5, 46.7, 41.6, 39.8, 39.4, 38.5, 45.3, 47.1, 51.7, 55.0, 60.4, 60.5, 54.7, 50.3, 42.3,
35.2, 40.8, 41.1, 42.8, 47.3, 50.9, 56.4, 62.2, 60.5, 55.4, 50.2, 43.0, 37.3, 34.8, 31.3, 41.0, 43.9, 53.1, 56.9,
62.5, 60.3, 59.8, 49.2, 42.9, 41.9, 41.6, 37.1, 41.2, 46.9, 51.2, 60.4, 60.1, 61.6, 57.0, 50.9, 43.0, 38.8, 37.1,
38.4, 38.4, 46.5, 53.5, 58.4, 60.6, 58.2, 53.8, 46.6, 45.5, 40.6, 42.4, 38.4, 40.3, 44.6, 50.9, 57.0, 62.1, 63.5,
56.3, 47.3, 43.6, 41.8, 36.2, 39.3, 44.5, 48.7, 54.2, 60.8, 65.5, 64.9, 60.1, 50.2, 42.1, 35.8, 39.4, 38.2, 40.4,
46.9, 53.4, 59.6, 66.5, 60.4, 59.2, 51.2, 42.8, 45.8, 40.0, 42.6, 43.5, 47.1, 50.0, 60.5, 64.6, 64.0, 56.8, 48.6,
44.2, 36.4, 37.3, 35.0, 44.0, 43.9, 52.7, 58.6, 60.0, 61.1, 58.1, 49.6, 41.6, 41.3, 40.8, 41.0, 38.4, 47.4, 54.1,
58.6, 61.4, 61.8, 56.3, 50.9, 41.4, 37.1, 42.1, 41.2, 47.3, 46.6, 52.4, 59.0, 59.6, 60.4, 57.0, 50.7, 47.8, 39.2,
39.4, 40.9, 42.4, 47.8, 52.4, 58.0, 60.7, 61.8, 58.2, 46.7, 46.6, 37.8)
}
# if(!is.vector(dataIn))
# {
# dataIn <- dataIn[, 1]
# }
testData <- dataIn[1:(length(dataIn)-nextVal)]
compData <- dataIn[(length(dataIn)-nextVal+1):length(dataIn)]
# For future reference
dataIn1 <- testData
# Set default values
if(!(hasArg(errorParameter)))
{
errorParameter <- 1
}
if(!(hasArg(nextVal)))
{
nextVal <- 10
}
if(!(hasArg(MethodName)))
{
MethodName <- "Proposed Method"
}
e <- 0
f <- 0
e1 <- 0
f1 <- 0
enew <- 0
fnew <- 0
gh <- NULL
gh1 <- NULL
ghnew <- NULL
dT1 <- Sys.time()
d <- forecast(auto.arima(dataIn1), nextVal)
d <- as.numeric(unlist(data.frame(d)[1]))
dT2 <- Sys.time()
dT <- dT2 - dT1
dT <- as.numeric(dT)
d1T1 <- Sys.time()
#d1 <- AUTO_PSF(dataIn1, nextVal)$Predicted_Values
d1 <- psf(data = dataIn1, n.ahead = nextVal)$predictions
d1T2 <- Sys.time()
d1T <- d1T2 - d1T1
d1T <- as.numeric(d1T)
if((hasArg(MethodPath)))
{
# to call functions from provided "MethodPath"
dnewT1 <- Sys.time()
dnew <- parse(text = MethodPath)
dnew <- eval(dnew)
dnew <- dnew$value(dataIn1)
dnewT2 <- Sys.time()
dnewT <- dnewT2 - dnewT1
dnewT <- as.numeric(dnewT)
if(errorParameter == 1)
{
ghnew <- rmse(compData - dnew)
parameter <- "RMSE Plot"
}
if(errorParameter == 2)
{
ghnew <- mae(compData - dnew)
parameter <- "MAE Plot"
}
if(errorParameter == 3)
{
ghnew <- imputeTestbench::mape((compData - dnew), compData)
parameter <- "MAPE Plot"
}
if(errorParameter[1] == 4)
{
newPar <- parse(text = errorParameter[2])
newPar <- eval(newPar)
newPar <- newPar$value(compData, dnew)
ghnew <- newPar
parameter <- errorParameter[3]
}
}
if(errorParameter == 1)
{
gh <- rmse(compData - d)
gh1 <- rmse(compData - d1)
parameter <- "RMSE Plot"
}
if(errorParameter == 2)
{
gh <- mae(compData - d)
gh1 <- mae(compData - d1)
parameter <- "MAE Plot"
}
if(errorParameter == 3)
{
gh <- imputeTestbench::mape((compData - d), compData)
gh1 <- imputeTestbench::mape((compData - d1), compData)
parameter <- "MAPE Plot"
}
if(errorParameter[1] == 4)
{
newPar <- parse(text = errorParameter[2])
newPar <- eval(newPar)
newPar1 <- newPar$value(compData, d)
gh <- newPar1
newPar2 <- newPar$value(compData, d1)
gh1 <- newPar2
parameter <- errorParameter[3]
}
e
fx <- 1:length(compData)
ex <- d
g <- data.frame(fx,ex)
h <- ggplot(g,aes(fx,ex)) + labs(title = parameter) + xlab("Percent of Missing Values")+ ylab("Error Values") + geom_line(aes(color="ARIMA Method")) + labs(color="Imputing Methods")
ex <- d1
g1 <- data.frame(fx,ex)
h <- h + geom_line(data=g1,aes(color= "PSF Method"))
if((hasArg(MethodPath)))
{
ex <- enew
fx <- 1:length(compData)
gnew <- data.frame(fx,ex)
h <- h + geom_line(data=gnew,aes(color= MethodName))
}
options(warn=-1)
if((hasArg(MethodPath)))
{
return(list(Parameter = parameter, Desired_Prediction = compData, ARIMA_Method_Prediction = d, ARIMA_Method_Error = gh, ARIMA_Execution_Time_in_Seconds = dT, PSF_Method_Prediction = d1, PSF_Method_Error = gh1, PSF_Execution_Time_in_Seconds = d1T, Proposed_Method_Prediction = dnew, Proposed_Method_Error = ghnew, Proposed_Method_Execution_Time_in_Seconds = dnewT))
}
else{
return(list(Parameter = parameter, Desired_Prediction = compData, ARIMA_Method_Prediction = d, ARIMA_Method_Error = gh, ARIMA_Execution_Time_in_Seconds = dT, PSF_Method_Prediction = d1, PSF_Method_Error = gh1, PSF_Execution_Time_in_Seconds = d1T))
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.