Description Usage Format Details Source Examples
This data consists of 1,000 runs of a random 1000 x 1000 noise matrix through profoundProFound
. The catalogue is a concatenation of all the segstats outputs for all of these run.
1 | data("FPtest")
|
A data frame with 7012 observations on the following 56 variables. See profoundProFound
for a detailed discussion on each of these parameters.
segID
a numeric vector
uniqueID
a numeric vector
xcen
a numeric vector
ycen
a numeric vector
xmax
a numeric vector
ymax
a numeric vector
RAcen
a logical vector
Deccen
a logical vector
RAmax
a logical vector
Decmax
a logical vector
sep
a numeric vector
flux
a numeric vector
mag
a numeric vector
cenfrac
a numeric vector
N50
a numeric vector
N90
a numeric vector
N100
a numeric vector
R50
a numeric vector
R90
a numeric vector
R100
a numeric vector
SB_N50
a numeric vector
SB_N90
a numeric vector
SB_N100
a numeric vector
xsd
a numeric vector
ysd
a numeric vector
covxy
a numeric vector
corxy
a numeric vector
con
a numeric vector
asymm
a logical vector
flux_reflect
a logical vector
mag_reflect
a logical vector
semimaj
a numeric vector
semimin
a numeric vector
axrat
a numeric vector
ang
a numeric vector
signif
a numeric vector
FPlim
a numeric vector
flux_err
a numeric vector
mag_err
a numeric vector
flux_err_sky
a numeric vector
flux_err_skyRMS
a numeric vector
flux_err_shot
a numeric vector
sky_mean
a numeric vector
sky_sum
a numeric vector
skyRMS_mean
a numeric vector
Nedge
a logical vector
Nsky
a logical vector
Nobject
a logical vector
Nborder
a logical vector
Nmask
a logical vector
edge_frac
a logical vector
edge_excess
a logical vector
flag_border
a logical vector
iter
a numeric vector
origfrac
a numeric vector
flag_keep
a logical vector
Specifically we ran with defaults the following command 1,000 times in a loop:
profoundProFound(matrix(rnorm(1e6),1e3))
The output is then a reference of the false positive rate, since we have not injected any sources into the images. The fact we find 7,012 false detections mean we expect 7 false positives per 1e6 pixels (the size in pixels of the input matrix). To compare against any target data we need to adjust the magnitudes by the sky RMS magnitude level, i.e. add on profoundFlux2Mag(skyRMS, 0) (if the zero point is 0 for our target data). See Examples for a comparison to our included VIKING data.
FPtest=
for(i in 1:1000)FPtest=rbind(FPtest,profoundProFound(matrix(rnorm(1e6),1e3))$segstats)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | ## Not run:
image=readFITS(system.file("extdata", 'VIKING/mystery_VIKING_Z.fits', package="ProFound"))
profound=profoundProFound(image, magzero=30, rotstats=TRUE)
skyRMS=median(profound$skyRMS)
magoff=profoundFlux2Mag(skyRMS, 30)
totpix=prod(profound$dim)
#We can easily compute the expected number of false positives on an image this size:
data("FPtest")
dim(FPtest)[1]*totpix/1e6/1e3
#And plot the detections and expected false positive distributions:
maghist(profound$segstats$mag, seq(-11,-1,by=0.2)+magoff)
maghist(FPtest$mag+magoff, seq(-6,-1,by=0.2)+magoff, scale=totpix/1e6/1e3, add=TRUE,
border='red')
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.