View source: R/publish.MIresult.R
publish.MIresult | R Documentation |
Regression tables after multiple imputations
## S3 method for class 'MIresult' publish( object, confint.method, pvalue.method, digits = c(2, 4), print = TRUE, factor.reference = "extraline", intercept, units = NULL, fit, data, ... )
object |
Object obtained with mitools::MIcombine based on smcfcs::smcfcs multiple imputation analysis |
confint.method |
No options here. Only Wald type confidence intervals. |
pvalue.method |
No options here. Only Wald type tests. |
digits |
Rounding digits for all numbers but the p-values. |
print |
If |
factor.reference |
Style for showing results for
categorical. See |
intercept |
See |
units |
See |
fit |
One fitted model using the same formula as
|
data |
Original data set which includes the missing values |
... |
passed to summary.regressionTable, labelUnits and publish.default. |
Show results of smcfcs based multiple imputations of missing covariates in publishable format
Thomas A. Gerds <tag@biostat.ku.dk>
## Not run: if (requireNamespace("riskRegression",quietly=TRUE) & requireNamespace("mitools",quietly=TRUE) & requireNamespace("smcfcs",quietly=TRUE)){ library(riskRegression) library(mitools) library(smcfcs) ## continuous outcome: linear regression # lava some data with missing values set.seed(7) d=sampleData(78) ## generate missing values d[X1==1,X6:=NA] d[X2==1,X3:=NA] d=d[,.(X8,X4,X3,X6,X7)] sapply(d,function(x)sum(is.na(x))) # multiple imputation (should set m to a large value) set.seed(17) f= smcfcs(d,smtype="lm", smformula=X8~X4+X3+X6+X7, method=c("","","logreg","norm",""),m=3) ccfit=lm(X8~X4+X3+X6+X7,data=d) mifit=MIcombine(with(imputationList(f$impDatasets), lm(X8~X4+X3+X6+X7))) publish(mifit,fit=ccfit,data=d) publish(ccfit) ## binary outcome # lava some data with missing values set.seed(7) db=sampleData(78,outcome="binary") ## generate missing values db[X1==1,X6:=NA] db[X2==1,X3:=NA] db=db[,.(Y,X4,X3,X6,X7)] sapply(db,function(x)sum(is.na(x))) # multiple imputation (should set m to a large value) set.seed(17) fb= smcfcs(db,smtype="logistic", smformula=Y~X4+X3+X6+X7, method=c("","","logreg","norm",""),m=2) ccfit=glm(Y~X4+X3+X6+X7,family="binomial",data=db) mifit=MIcombine(with(imputationList(fb$impDatasets), glm(Y~X4+X3+X6+X7,family="binomial"))) publish(mifit,fit=ccfit) publish(ccfit) ## survival: Cox regression library(survival) # lava some data with missing values set.seed(7) ds=sampleData(78,outcome="survival") ## generate missing values ds[X5==1,X6:=NA] ds[X2==1,X3:=NA] ds=ds[,.(time,event,X4,X3,X6,X7)] sapply(ds,function(x)sum(is.na(x))) set.seed(17) fs= smcfcs(ds,smtype="coxph", smformula="Surv(time,event)~X4+X3+X6+X7", method=c("","","","logreg","norm",""),m=2) ccfit=coxph(Surv(time,event)~X4+X3+X6+X7,data=ds) mifit=MIcombine(with(imputationList(fs$impDatasets), coxph(Surv(time,event)~X4+X3+X6+X7))) publish(mifit,fit=ccfit,data=ds) publish(ccfit) ## competing risks: Cause-specific Cox regression library(survival) # lava some data with missing values set.seed(7) dcr=sampleData(78,outcome="competing.risks") ## generate missing values dcr[X5==1,X6:=NA] dcr[X2==1,X3:=NA] dcr=dcr[,.(time,event,X4,X3,X6,X7)] sapply(dcr,function(x)sum(is.na(x))) set.seed(17) fcr= smcfcs(dcr,smtype="compet", smformula=c("Surv(time,event==1)~X4+X3+X6+X7", "Surv(time,event==2)~X4+X3+X6+X7"), method=c("","","","logreg","norm",""),m=2) ## cause 2 ccfit2=coxph(Surv(time,event==2)~X4+X3+X6+X7,data=dcr) mifit2=MIcombine(with(imputationList(fcr$impDatasets), coxph(Surv(time,event==2)~X4+X3+X6+X7))) publish(mifit2,fit=ccfit2,data=dcr) publish(ccfit2) } ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.