View source: R/Confidence_Interval_Beta_Distribution.R
| beta.meths.CI | R Documentation |
For details see: Stewart, C. (2013) Zero-Inflated Beta Distribution for Modeling the Proportions in Quantitative Fatty Acid Signature Analysis. Journal of Applied Statistics, 40(5), 985-992.
beta.meths.CI(
predator.mat,
prey.mat,
cal.mat = rep(1, length(ext.fa)),
dist.meas,
noise = 0,
nprey,
R.p,
R.ps,
R,
p.mat,
alpha,
FC = rep(1, nrow(prey.mat)),
ext.fa
)
predator.mat |
matrix containing the fatty acid signatures of the predators. |
prey.mat |
prey database. A dataframe with first column a Species label and other columns fatty acid proportions. Fatty acid proportions are compositional. |
cal.mat |
matrix of calibration coefficients of predators. Each column corresponds to a different predator. At least one calibration coefficient vector must be supplied. |
dist.meas |
distance measure to use for estimation: 1=KL, 2=AIT or 3=CS |
noise |
proportion of noise to include in the simulation. |
nprey |
number of prey to sample from the the prey database when generating pseudo-predators for the nuisance parameter estimation. |
R.p |
number of beta diet distributions to generate for the nuisance parameters. |
R.ps |
number of pseudo predators to generate when estimating nuisance parameters. |
R |
number of bootstrap replicates to use when generating p-values for confidence interval estimation. |
p.mat |
matrix of predator diet estimates for which we are trying to find confidence intervals. |
alpha |
confidence interval confidence level. |
FC |
vector of prey fat content. Note that this vector is
passed to the |
ext.fa |
subset of fatty acids to be used to obtain QFASA diet estimates. |
Note:
These intervals are biased and should be corrected using the
output from bias.all.
CI.L.1 and CI.U.1 contain the simultaneous
confidence intervals.
Slow because of bisection and lots of repetition.
Individual confidence intervals and simultaneous confidence
intervals based on the zero-inflated beta distribution. These
intervals are biased and should be corrected using the output
from bias.all. ci.l.1 and ci.u.1
contain the simultaneous confidence intervals.
Stewart, C. (2013) Zero-inflated beta distribution for modeling the proportions in quantitative fatty acid signature analysis. Journal of Applied Statistics, 40(5), 985-992.
##### beta.meths.CI is deprecated. Please use conf.meth! #####
## Fatty Acids
data(FAset)
fa.set = as.vector(unlist(FAset))
## Predators
data(predatorFAs)
tombstone.info = predatorFAs[,1:4]
predator.matrix = predatorFAs[, fa.set]
npredators = nrow(predator.matrix)
## Prey
prey.sub = preyFAs[, fa.set]
prey.sub = prey.sub / apply(prey.sub, 1, sum)
group = as.vector(preyFAs$Species)
prey.matrix.full = cbind(group,prey.sub)
prey.matrix = MEANmeth(prey.matrix.full)
## Calibration Coefficients
data(CC)
cal.vec = CC[CC$FA %in% fa.set, 2]
cal.mat = replicate(npredators, cal.vec)
# Note: uncomment examples to run. CRAN tests fail because execution time > 5 seconds
# set.seed(1234)
# diet.est <- p.QFASA(predator.mat = predator.matrix,
# prey.mat = prey.matrix,
# cal.mat = cal.mat,
# dist.meas = 2,
# start.val = rep(1,nrow(prey.matrix)),
# ext.fa = fa.set)[['Diet Estimates']]
#
# ci = beta.meths.CI(predator.mat = predator.matrix,
# prey.mat = prey.matrix.full,
# cal.mat = cal.mat,
# dist.meas = 2,
# nprey = 10,
# R.p = 1,
# R.ps = 10, #
# R = 1,
# p.mat = diet.est,
# alpha = 0.05,
# ext.fa = fa.set)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.