View source: R/All_MUFASA_Code.R
p.MUFASA | R Documentation |
Computes the diet estimate for each predator in pred.mat using MLE method.
p.MUFASA(pred.mat, prey.mat, cal.mat, FC, ext.fa)
pred.mat |
matrix containing the FA signatures of the predators. |
prey.mat |
matrix containing FA signatures from each prey group The first column must index the prey group. prey.mat is the prey database. |
cal.mat |
matrix of calibration factors where the i th column is to be used with the i th predator. If modelling is to be done without calibration coefficients, simply pass a vector or matrix of ones. cal.mat must contain names of FAs. |
FC |
vector of fat content of length equal to the number of prey groups or species. |
ext.fa |
subset of fatty acids to be used to obtain QFASA diet estimates. |
A list with components:
Diet_Estimates |
A matrix of the diet estimates for each predator where each row corresponds to a predator and the columns to prey species. The estimates are expressed as proportions summing to one. |
nll |
Negative log likelihood values. As per solnp documentation, nll is "Vector of function values during optimization with last one the value at the optimal". |
Var_Epsilon |
Optimized values of error variance. See reference. |
Steeves, Holly (2020) Maximum likelihood approach to diet estimation and inference based on fatty acid signatures. PhD thesis available at https://dalspace.library.dal.ca/handle/10222/80034.
p.MLE() for a simplifed version of p.MUFASA() that is faster to run.
## This example takes some time to run.
## Please uncomment code below to run.
#library(dplyr)
#library(compositions)
## Fatty Acids
#data(FAset)
#fa.set = as.vector(unlist(FAset))
## Predators
#data(predatorFAs)
#tombstone.info = predatorFAs[,1:4]
#predator.matrix = predatorFAs[,5:(ncol(predatorFAs))]
#npredators = nrow(predator.matrix)
## Prey
## Extracting a small number of species to speed up calculations for the example.
#data(preyFAs)
#prey.matrix = preyFAs[,-c(1,3)]
#spec.red <-c("capelin", "herring", "mackerel", "pilchard", "sandlance")
#spec.red <- sort(spec.red)
#prey.red <- prey.matrix %>% filter(Species %in% spec.red)
## Fat content
#FC = preyFAs[,c(2,3)]
#FC = FC %>% arrange(Species)
#FC.vec = tapply(FC$lipid,FC$Species,mean,na.rm=TRUE)
#FC.red <- FC.vec[spec.red]
## Calibration Coefficients
#data(CC)
#cal.vec = CC[,2]
#cal.m = replicate(npredators, cal.vec)
#rownames(cal.m) <- CC$FA
#M <- p.MUFASA(predator.matrix, prey.red, cal.m, FC.red, fa.set)
## Diet EStimates
#M$Diet_Estimates
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.