Nothing
#' Read capture-recapture data with Input (.inp) format used by program MARK
#'
#' This function reads in capture-recapture dataset with the Input format.
#' It is a wrapper for the function convert.inp from package RMark. It drops continuous covariates because no goodness-of-fit test exists for such models
#' @param file text file with Input format (extension .inp)
#' @param group.df dataframe with grouping variables; contains a row for each group defined in the input file row1=group1, row2=group2 etc. Names and number of columns in the dataframe is set by user to define grouping variables in RMark dataframe
#' @return list with first component the matrix of encounter histories, second components the vector of number of individuals with corresponding histories and, if relevant, third component vector/matrix with group(s)
#' @author Olivier Gimenez <olivier.gimenez@cefe.cnrs.fr>
#' @keywords package
#' @export
#' @examples
#' # read in Dipper dataset
#' dipper = system.file("extdata", "ed.inp", package = "R2ucare")
#' read_inp(dipper,group.df=data.frame(sex=c('Male','Female')))
#' # read in Geese dataset
#' geese = system.file("extdata", "geese.inp", package = "R2ucare")
#' read_inp(geese)
read_inp <- function(file,group.df=NULL){
# read in data, all columns as character, and ignore comments
data = RMark::convert.inp(file,group.df=group.df)
# add spaces between columns:
enc_hist = matrix(as.numeric(unlist(strsplit(data$ch, ''))),nrow=nrow(data),byrow=T)
counts = data$freq
# return list of results
if (is.null(group.df)){
return(list(encounter_histories=enc_hist,sample_size=counts))
} else {
return(list(encounter_histories=enc_hist,sample_size=counts,groups=data[,names(group.df)]))
}
} # end of function
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.