Description Usage Arguments Value Note Author(s) See Also Examples
This function makes an iteration of PCA-Gaussianization process
1 | GPCA_iteration(x_prev, extremes = TRUE)
|
x_prev |
previous set of random variable |
extremes |
see |
A GPCA_iteration
S3 object which contains the following objects:
x_prev
Previous set of random variable, x_prev
input variable
x_gauss_prev
Marginal Gaussianization of x_prev
obtained through normalizeGaussian_severalstations
B_prev
rotation matrix (i. e. eigenvector matrix of the covariance matrix of x_gauss_prev
x_next
results obtained by multiplying B_prev
by x_gauss_prev
(see equation 1 of the reference)
This function is based on equation (1) of "PCA Gaussianization for One-Class Remote Sensing Image" by V. Laparra et al., https://www.uv.es/lapeva/papers/SPIE09_one_class.pdf and http://ieeexplore.ieee.org/document/5413808/
Emanuele Cordano
GPCA
,GPCA_iteration
,inv_GPCA_iteration
,inv_GPCA
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | library(RMAWGEN)
set.seed(1222)
N <- 20
x <- rexp(N)
y <- x+rnorm(N)
df <- data.frame(x=x,y=y)
GPCA <- GPCA_iteration(df,extremes=TRUE)
x <- rnorm(N)
y <- x+rnorm(N)
dfn <- data.frame(x=x,y=y)
GPCAn <- GPCA_iteration(dfn,extremes=TRUE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.