tests/testthat/test_RMSS.R

# --------------------------------------------------
# Test Script - Output from cv.SplitGLM Function
# --------------------------------------------------

# Required libraries
library(mvnfast)
library(RMSS)

# Context of test script
context("Verify output of RMSS function.")

# There should be an error if we want to compute the IF TS, and no returns are provided
test_that("Error in the RMSS function.", {

  # Simulation parameters
  n <- 50
  p <- 100
  rho <- 0.8
  rho.inactive <- 0.2
  group.size <- 5
  p.active <- 15
  snr <- 2
  contamination.prop <- 0.3
  
  # Setting the seed
  set.seed(0)
  
  # Block Correlation
  sigma.mat <- matrix(0, p, p)
  sigma.mat[1:p.active, 1:p.active] <- rho.inactive
  for(group in 0:(p.active/group.size - 1))
    sigma.mat[(group*group.size+1):(group*group.size+group.size),(group*group.size+1):(group*group.size+group.size)] <- rho
  diag(sigma.mat) <- 1
  
  # Simulation of beta vector
  true.beta <- c(runif(p.active, 0, 5)*(-1)^rbinom(p.active, 1, 0.7), rep(0, p - p.active))
  
  # Setting the SD of the variance
  sigma <- as.numeric(sqrt(t(true.beta) %*% sigma.mat %*% true.beta)/sqrt(snr))
  
  # Simulation of test data
  m <- 2e3
  x_test <- mvnfast::rmvn(m, mu = rep(0, p), sigma = sigma.mat)
  y_test <- x_test %*% true.beta + rnorm(m, 0, sigma)
  
  # Simulation of uncontaminated data 
  x <- mvnfast::rmvn(n, mu = rep(0, p), sigma = sigma.mat)
  y <- x %*% true.beta + rnorm(n, 0, sigma)
  
  # Contamination of data 
  contamination_indices <- 1:floor(n*contamination.prop)
  k_lev <- 2
  k_slo <- 100
  x_train <- x
  y_train <- y
  beta_cont <- true.beta
  beta_cont[true.beta!=0] <- beta_cont[true.beta!=0]*(1 + k_slo)
  beta_cont[true.beta==0] <- k_slo*max(abs(true.beta))
  for(cont_id in contamination_indices){
    
    a <- runif(p, min = -1, max = 1)
    a <- a - as.numeric((1/p)*t(a) %*% rep(1, p))
    x_train[cont_id,] <- mvnfast::rmvn(1, rep(0, p), 0.1^2*diag(p)) + k_lev * a / as.numeric(sqrt(t(a) %*% solve(sigma.mat) %*% a))
    y_train[cont_id] <- t(x_train[cont_id,]) %*% beta_cont
  }
  
  # # CV RMSS
  # cv.rmss_fit <- cv.RMSS(x = x_train, y = y_train,
  #                        n_models = 3,
  #                        h_grid = c(35), t_grid = c(6, 8, 10), u_grid = c(1:3),
  #                        initial_estimator = "srlars",
  #                        tolerance = 1e-1,
  #                        max_iter = 1e3,
  #                        neighborhood_search = FALSE,
  #                        neighborhood_search_tolerance = 1e-1,
  #                        n_folds = 5,
  #                        alpha = 1/4,
  #                        gamma = 1, 
  #                        n_threads = 1)
  # rmss_coefs <- coef(cv.rmss_fit, 
  #                    h_ind = cv.rmss_fit$h_opt, t_ind = cv.rmss_fit$t_opt, u_ind = cv.rmss_fit$u_opt,
  #                    group_index = 1:cv.rmss_fit$n_models)
  # sens_rmss <- sum(which((rmss_coefs[-1]!=0)) <= p.active)/p.active
  # spec_rmss <- sum(which((rmss_coefs[-1]!=0)) <= p.active)/sum(rmss_coefs[-1]!=0)
  # rmss_preds <- predict(cv.rmss_fit, newx = x_test,
  #                       h_ind = cv.rmss_fit$h_opt, t_ind = cv.rmss_fit$t_opt, u_ind = cv.rmss_fit$u_opt,
  #                       group_index = 1:cv.rmss_fit$n_models,
  #                       dynamic = FALSE)
  # rmss_mspe <- mean((y_test - rmss_preds)^2)/sigma^2
  
  expect_vector(numeric(ncol(x_train)+1))
})

Try the RMSS package in your browser

Any scripts or data that you put into this service are public.

RMSS documentation built on Sept. 14, 2023, 9:08 a.m.