Nothing
# --------------------------------------------------
# Test Script - Output from cv.SplitGLM Function
# --------------------------------------------------
# Required libraries
library(mvnfast)
library(RMSS)
# Context of test script
context("Verify output of RMSS function.")
# There should be an error if we want to compute the IF TS, and no returns are provided
test_that("Error in the RMSS function.", {
# Simulation parameters
n <- 50
p <- 100
rho <- 0.8
rho.inactive <- 0.2
group.size <- 5
p.active <- 15
snr <- 2
contamination.prop <- 0.3
# Setting the seed
set.seed(0)
# Block Correlation
sigma.mat <- matrix(0, p, p)
sigma.mat[1:p.active, 1:p.active] <- rho.inactive
for(group in 0:(p.active/group.size - 1))
sigma.mat[(group*group.size+1):(group*group.size+group.size),(group*group.size+1):(group*group.size+group.size)] <- rho
diag(sigma.mat) <- 1
# Simulation of beta vector
true.beta <- c(runif(p.active, 0, 5)*(-1)^rbinom(p.active, 1, 0.7), rep(0, p - p.active))
# Setting the SD of the variance
sigma <- as.numeric(sqrt(t(true.beta) %*% sigma.mat %*% true.beta)/sqrt(snr))
# Simulation of test data
m <- 2e3
x_test <- mvnfast::rmvn(m, mu = rep(0, p), sigma = sigma.mat)
y_test <- x_test %*% true.beta + rnorm(m, 0, sigma)
# Simulation of uncontaminated data
x <- mvnfast::rmvn(n, mu = rep(0, p), sigma = sigma.mat)
y <- x %*% true.beta + rnorm(n, 0, sigma)
# Contamination of data
contamination_indices <- 1:floor(n*contamination.prop)
k_lev <- 2
k_slo <- 100
x_train <- x
y_train <- y
beta_cont <- true.beta
beta_cont[true.beta!=0] <- beta_cont[true.beta!=0]*(1 + k_slo)
beta_cont[true.beta==0] <- k_slo*max(abs(true.beta))
for(cont_id in contamination_indices){
a <- runif(p, min = -1, max = 1)
a <- a - as.numeric((1/p)*t(a) %*% rep(1, p))
x_train[cont_id,] <- mvnfast::rmvn(1, rep(0, p), 0.1^2*diag(p)) + k_lev * a / as.numeric(sqrt(t(a) %*% solve(sigma.mat) %*% a))
y_train[cont_id] <- t(x_train[cont_id,]) %*% beta_cont
}
# # CV RMSS
# cv.rmss_fit <- cv.RMSS(x = x_train, y = y_train,
# n_models = 3,
# h_grid = c(35), t_grid = c(6, 8, 10), u_grid = c(1:3),
# initial_estimator = "srlars",
# tolerance = 1e-1,
# max_iter = 1e3,
# neighborhood_search = FALSE,
# neighborhood_search_tolerance = 1e-1,
# n_folds = 5,
# alpha = 1/4,
# gamma = 1,
# n_threads = 1)
# rmss_coefs <- coef(cv.rmss_fit,
# h_ind = cv.rmss_fit$h_opt, t_ind = cv.rmss_fit$t_opt, u_ind = cv.rmss_fit$u_opt,
# group_index = 1:cv.rmss_fit$n_models)
# sens_rmss <- sum(which((rmss_coefs[-1]!=0)) <= p.active)/p.active
# spec_rmss <- sum(which((rmss_coefs[-1]!=0)) <= p.active)/sum(rmss_coefs[-1]!=0)
# rmss_preds <- predict(cv.rmss_fit, newx = x_test,
# h_ind = cv.rmss_fit$h_opt, t_ind = cv.rmss_fit$t_opt, u_ind = cv.rmss_fit$u_opt,
# group_index = 1:cv.rmss_fit$n_models,
# dynamic = FALSE)
# rmss_mspe <- mean((y_test - rmss_preds)^2)/sigma^2
expect_vector(numeric(ncol(x_train)+1))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.