MSJollySeber: Multistate Jolly Seber

MSJollySeberR Documentation

Multistate Jolly Seber

Description

Multistate Jolly Seber

Author(s)

Jeff Laake (simulated data from Gary White)

Examples


# import the sample data
pathtodata=paste(path.package("RMark"),"extdata",sep="/")
msjs3=convert.inp(paste(pathtodata,"MSJS3state.inp",sep="/"))
# process with MSJollySeber model and strata labels
dp=process.data(msjs3,model="MSJollySeber",strata.labels=c("E","F","G"))
# create design data and use time pims for Psi and pent because global model used
# to simulate data only had time/strata effects
ddl=make.design.data(dp,parameters=list(Psi=list(pim.type="time"),pent=list(pim.type="time")))
# p for first occasion is confounded because pent since it is time dependent
# p for last occasion is confounded because survival is time dependent
# Thus times 1 and 2 are combined as 1 and times 3 and 4 are combined as time 2
ddl$p$time[ddl$p$time==2]=1
ddl$p$time[ddl$p$time==3]=2
ddl$p$time[ddl$p$time==4]=2
ddl$p=droplevels(ddl$p)
# run global model that was used to generate the data. These results match what was produced in 
# MARK .dbf that Gary provided to me.
model=mark(dp,ddl=ddl,model.parameters=list(S=list(formula=~-1+stratum:time,link="sin"),
                         Psi=list(formula=~-1+stratum:tostratum:time),
                         pent=list(formula=~stratum*time),
                         p=list(formula=~-1+stratum:time,link="sin"),
                         pi=list(formula=~-1+stratum)),delete=TRUE)
# Examine derived abundance estimates
model$results$derived
#$`N*`
# estimate       se    lcl      ucl
#1     1200 22.88454 1159.6 1249.699
#
#$`N_TSA(s*t)`
#estimate        se       lcl      ucl
#1  180.00027  55.22876 126.98046 381.1247
#2  249.59448  73.28850 177.32650 511.2946
#3  377.20653  92.15176 276.37043 681.2139
#4  422.14994 105.74592 307.97920 774.6687
#5  119.99866  38.18683  84.16549 261.3716
#6  193.39459  57.72862 137.03323 401.0494
#7  296.19950  71.38362 217.52522 530.3700
#8  350.09106  86.97180 255.76981 639.0182
#9   60.00109  21.23089  41.40889 142.5095
#10 120.99888  38.29786  84.93901 262.4367
#11 194.19013  45.93703 143.06755 343.7371
#12 248.60043  61.37312 181.81724 451.9540
msjs3$grp=factor(as.numeric(runif(1686)<0.5))
dp=process.data(msjs3,model="MSJollySeber",strata.labels=c("E","F","G"),groups="grp")
# create design data and use time pims for Psi and pent because global model used
# to simulate data only had time/strata effects
ddl=make.design.data(dp,parameters=list(Psi=list(pim.type="time"),pent=list(pim.type="time")))
# p for first occasion is confounded because pent since it is time dependent
# p for last occasion is confounded because survival is time dependent
# Thus times 1 and 2 are combined as 1 and times 3 and 4 are combined as time 2
ddl$p$time[ddl$p$time==2]=1
ddl$p$time[ddl$p$time==3]=2
ddl$p$time[ddl$p$time==4]=2
ddl$p=droplevels(ddl$p)
model=mark(dp,ddl=ddl,model.parameters=list(S=list(formula=~-1+stratum:time,link="sin"),
                         Psi=list(formula=~-1+stratum:tostratum:time),
                         pent=list(formula=~stratum*time),
                         p=list(formula=~-1+stratum:time,link="sin"),
                         pi=list(formula=~-1+stratum)),delete=TRUE)
# Note that I don't have groups separated out; probably need to add these but 
# first 12 are for group 1 and second 12 are for group 2
model$results$derived
#$`N*`
#estimate       se      lcl      ucl
#1 576.5519 10.99515 557.1415 600.4303
#2 623.4481 11.88948 602.4589 649.2687
#
#$`N_TSA(s*t)`
#estimate       se       lcl       ucl
#1   86.48235 26.53543  59.74870 179.73562
#2  119.91930 35.21259  87.08794 250.88028
#3  181.23323 44.27568 158.25938 412.81875
#4  202.82678 50.80719 138.39582 351.52314
#5   57.65490 18.34742  40.00284 124.36399
#6   92.91895 27.73659  69.10044 202.16049
#7  142.31136 34.29734 108.00098 263.47936
#8  168.20397 41.78690 132.40312 333.04237
#9   28.82821 10.20072  22.06997  76.00783
#10  58.13528 18.40095  45.08338 139.96467
#11  93.30069 22.07105  72.55341 174.90726
#12 119.44262 29.48746  89.82760 223.31249
#13  93.51673 28.69379  67.33555 201.88406
#14 129.67341 38.07675  90.39324 261.12212
#15 195.97456 47.87702 131.43369 328.98380
#16 219.32450 54.93979 175.00065 444.87035
#17  62.34450 19.83979  44.17969 137.09149
#18 100.47688 29.99266  68.46238 201.34980
#19 153.88682 37.08705 110.11103 269.06238
#20 181.88551 45.18580 126.26801 317.46649
#21  31.17307 11.03043  19.84077  69.37125
#22  62.86395 19.89767  40.98810 128.26377
#23 100.88968 23.86628  71.50113 172.47586
#24 129.15797 31.88594  92.33709 229.95112
#
#$`N_TSA(t)`
#estimate       se      lcl      ucl
#1 172.9655 17.57292 146.1440 216.6946
#2 270.9735 17.86549 242.2069 313.2976
#3 416.8453 21.54149 382.6336 468.5324
#4 490.4734 29.73746 440.1191 557.6749
#5 187.0343 19.00228 158.0680 234.3750
#6 293.0142 19.31866 260.1141 336.4346
#7 450.7511 23.29365 409.1688 500.7981
#8 530.3680 32.15627 476.2905 603.5088
#
#$`N(s*t)`
#estimate        se       lcl       ucl
#1   81.67410 23.937921  58.04354 167.08272
#2  126.83858 37.175211  90.14070 259.47682
#3  259.54924 63.478782 190.12917 469.06140
#4  148.55131 36.331666 108.81919 268.46423
#5   56.08549 16.675093  39.76587 115.96055
#6  104.09903 30.950270  73.80855 215.23180
#7  157.41243 37.901060 115.62023 281.69787
#8  204.11663 49.146288 149.92471 365.27751
#9   34.90008 10.950259  24.53295  75.18089
#10  71.01092 22.280408  49.91700 152.96997
#11 109.13438 25.654572  80.49076 192.43787
#12 130.02727 30.565932  95.90006 229.27854
#13  98.32499 28.818144  69.87688 201.14587
#14 122.75425 35.978133  87.23809 251.12141
#15 117.65857 28.776129  86.18914 212.63438
#16 273.60001 66.915223 200.42187 494.45417
#17  63.91392 19.002608  45.31640 132.14636
#18  89.29676 26.549323  63.31340 184.62710
#19 138.78578 33.416218 101.93886 248.36450
#20 145.97290 35.146702 107.21784 261.22623
#21  25.10117  7.875752  17.64482  54.07233
#22  49.98828 15.684338  35.13917 107.68352
#23  85.05591 19.994369  62.73197 149.98004
#24 118.57332 27.873415  87.45234 209.08166
#
#$`N(t)`
#estimate       se      lcl      ucl
#1 172.6597 12.84355 151.7126 202.7258
#2 301.9485 20.11213 268.5098 348.1893
#3 526.0961 35.72379 466.8913 608.4782
#4 482.6952 31.12914 430.6676 553.9137
#5 187.3401 16.99719 160.7135 228.6425
#6 262.0393 19.37969 230.3986 307.3613
#7 341.5003 20.10434 307.4281 386.8953
#8 538.1462 38.90093 474.3711 628.7710
#
# For better labels and interpretation see MARK output
#Total Abundance Estimates 
#Grp.      N*-hat        Standard Error      Lower           Upper
#----    --------------  --------------  --------------  --------------
#1     576.55192       10.995146       557.14154       600.43028    
#2     623.44807       11.889480       602.45888       649.26868    
#
#Abundance Estimates 
#Grp. Str. Occ.    Abundance      Standard Error      Lower           Upper
#---- ---- ----   --------------  --------------  --------------  --------------
#1    E    1    86.482346       26.535427       59.748702       179.73562    
#1    E    2    119.91930       35.212594       87.087938       250.88028    
#1    E    3    181.23323       44.275677       158.25938       412.81875    
#1    E    4    202.82678       50.807187       138.39582       351.52314    
#1    F    1    57.654903       18.347425       40.002836       124.36399    
#1    F    2    92.918950       27.736591       69.100442       202.16049    
#1    F    3    142.31136       34.297342       108.00098       263.47936    
#1    F    4    168.20397       41.786899       132.40312       333.04237    
#1    G    1    28.828208       10.200716       22.069972       76.007829    
#1    G    2    58.135284       18.400953       45.083379       139.96467    
#1    G    3    93.300695       22.071048       72.553406       174.90726    
#1    G    4    119.44262       29.487455       89.827598       223.31249    
#2    E    1    93.516733       28.693792       67.335545       201.88406    
#2    E    2    129.67341       38.076751       90.393237       261.12212    
#2    E    3    195.97456       47.877016       131.43369       328.98380    
#2    E    4    219.32450       54.939793       175.00065       444.87035    
#2    F    1    62.344496       19.839786       44.179691       137.09149    
#2    F    2    100.47688       29.992658       68.462381       201.34980    
#2    F    3    153.88682       37.087053       110.11103       269.06238    
#2    F    4    181.88551       45.185803       126.26801       317.46649    
#2    G    1    31.173066       11.030432       19.840768       69.371247    
#2    G    2    62.863950       19.897668       40.988101       128.26377    
#2    G    3    100.88968       23.866285       71.501133       172.47586    
#2    G    4    129.15797       31.885935       92.337089       229.95112    
#
#Summed Abundance Estimates 
#Grp. Occ.    Abundance      Standard Error      Lower           Upper
#---- ----   --------------  --------------  --------------  --------------
#1    1    172.96546       17.572916       146.14398       216.69465    
#1    2    270.97353       17.865494       242.20692       313.29762    
#1    3    416.84528       21.541486       382.63361       468.53243    
#1    4    490.47337       29.737455       440.11912       557.67492    
#2    1    187.03430       19.002280       158.06800       234.37501    
#2    2    293.01425       19.318655       260.11406       336.43459    
#2    3    450.75106       23.293649       409.16876       500.79814    
#2    4    530.36798       32.156270       476.29049       603.50885    
#
#Abundance Estimates without TSA 
#Grp. Str. Occ.    Abundance      Standard Error      Lower           Upper
#---- ---- ----   --------------  --------------  --------------  --------------
#1    E    1    81.674097       23.937921       58.043545       167.08272    
#1    E    2    126.83858       37.175211       90.140704       259.47682    
#1    E    3    259.54924       63.478782       190.12917       469.06140    
#1    E    4    148.55131       36.331666       108.81919       268.46423    
#1    F    1    56.085487       16.675093       39.765869       115.96055    
#1    F    2    104.09903       30.950270       73.808547       215.23180    
#1    F    3    157.41243       37.901060       115.62023       281.69787    
#1    F    4    204.11663       49.146288       149.92471       365.27751    
#1    G    1    34.900079       10.950259       24.532949       75.180890    
#1    G    2    71.010918       22.280408       49.917000       152.96997    
#1    G    3    109.13438       25.654572       80.490758       192.43787    
#1    G    4    130.02727       30.565932       95.900063       229.27854    
#2    E    1    98.324993       28.818144       69.876881       201.14587    
#2    E    2    122.75425       35.978133       87.238086       251.12141    
#2    E    3    117.65857       28.776129       86.189140       212.63438    
#2    E    4    273.60001       66.915223       200.42187       494.45417    
#2    F    1    63.913917       19.002608       45.316401       132.14636    
#2    F    2    89.296755       26.549323       63.313404       184.62710    
#2    F    3    138.78578       33.416218       101.93886       248.36450    
#2    F    4    145.97290       35.146702       107.21784       261.22623    
#2    G    1    25.101172       7.8757515       17.644825       54.072326    
#2    G    2    49.988280       15.684338       35.139173       107.68352    
#2    G    3    85.055913       19.994369       62.731974       149.98004    
#2    G    4    118.57332       27.873415       87.452338       209.08166    
#
#Summed Abundance Estimates without TSA 
#Grp. Occ.    Abundance      Standard Error      Lower           Upper
#---- ----   --------------  --------------  --------------  --------------
#1    1    172.65966       12.843549       151.71260       202.72578    
#1    2    301.94852       20.112126       268.50983       348.18933    
#1    3    526.09605       35.723790       466.89129       608.47820    
#1    4    482.69521       31.129138       430.66757       553.91371    
#2    1    187.34008       16.997192       160.71347       228.64245    
#2    2    262.03929       19.379689       230.39863       307.36128    
#2    3    341.50026       20.104344       307.42812       386.89528    
#2    4    538.14624       38.900929       474.37108       628.77101    
#
#Expected Ingress, Egress, and Residence Times 1&2 
#Grp.    Estimate        Standard Error      Lower           Upper
#----    --------------  --------------  --------------  --------------
#1     2.4000144       0.0650048       2.2726051       2.5274237    
#1     3.7437021       0.0583736       3.6292898       3.8581145    
#1     2.3436877       0.0811437       2.1846461       2.5027293    
#1     3.4389990       0.1604949       3.1244290       3.7535689    
#2     2.4000144       0.0650048       2.2726051       2.5274237    
#2     3.7437021       0.0583736       3.6292898       3.8581145    
#2     2.3436877       0.0811437       2.1846461       2.5027293    
#2     3.4389990       0.1604949       3.1244290       3.7535689    


RMark documentation built on Jan. 31, 2026, 9:06 a.m.

Related to MSJollySeber in RMark...