| popan.derived | R Documentation |
Computes estimates, standard errors, confidence intervals and var-cov matrix
for population size of each group at each occasion and the sum across groups
by occasion for POPAN models. If a marklist is provided the estimates
are model averaged.
popan.derived(x,model,revised=TRUE,normal=TRUE,N=TRUE,NGross=TRUE,drop=FALSE) popan.Nt(Phi,pent,Ns,vc,time.intervals) popan.NGross(Phi,pent,Ns,vc,time.intervals)
x |
processed data list resulting from |
model |
a single mark POPAN model or a |
revised |
if TRUE, uses revised version of model averaged standard error eq 6.12; otherwise uses eq 4.9 of Burnham and Anderson (2002) |
normal |
if TRUE, uses confidence interval based on normal distribution; otherwise, uses log-normal |
N |
if TRUE, will return abundance estimates by group and occasion and total by occasion |
NGross |
if TRUE, will return gross abundance estimate per group |
drop |
if TRUE, models with any non-positive variance for betas are dropped |
Phi |
interval-specific survival estimates for each group |
pent |
occasion-specific prob of entry estimates (first computed by subtraction) for each group |
Ns |
group specific super-population estimate |
vc |
variance-covariance matrix of the real parameters |
time.intervals |
vector of time interval values |
popan.derived computes all of the real parameters using
covariate.predictions and handles all of the computation using
popan.Nt. Description for functions popan.Nt and
popan.NGross are given here for completeness but it is not intended
that they be called directly.
If a model is a marklist of models, the values returned by
popan.derived are model averaged using model weights in the
model.table; otherwise, it returns the values for the specified
model.
popan.derived returns a list with the following elements
depending on the values of N and NGross:
N - dataframe of estimates by group and occasion and se, lcl,ucl and group/occasion data N.vcv - variance-covariance matrix of abundance estimates in N Nbyocc - dataframe of estimates by occasion (summed across groups) and se, lcl,ucl and occasion data Nbyocc.vcv - variance-covariance matrix of abundance estimates in Nbyocc NGross - dataframe of gross abundance estimates by group and se, lcl,and ucl NGross.vcv - variance-covariance matrix of NGross abundance estimates
popan.Nt returns a list with the following elements:
N - dataframe of estimates by group and occasion and se, lcl,ucl and group/occasion data N.vcv - variance-covariance matrix of abundance estimates in N
popan.NGross returns a list with the following elements:
NGross - vector of gross abundance estimates by group vcv - variance-covariance matrix of abundance estimates in NGross
Jeff Laake
BURNHAM, K. P., AND D. R. ANDERSON. 2002. Model selection and multimodel inference. A practical information-theoretic approach. Springer, New York.
# This example is excluded from testing to reduce package check time
# Example
data(dipper)
dipper.processed=process.data(dipper,model="POPAN",groups="sex")
run.dipper.popan=function()
{
dipper.ddl=make.design.data(dipper.processed)
Phidot=list(formula=~1)
Phitime=list(formula=~time)
pdot=list(formula=~1)
ptime=list(formula=~time)
pentsex.time=list(formula=~time)
Nsex=list(formula=~sex)
#
# Run assortment of models
#
dipper.phisex.time.psex.time.pentsex.time=mark(dipper.processed,
dipper.ddl,model.parameters=list(Phi=Phidot,p=ptime,
pent=pentsex.time,N=Nsex),invisible=FALSE,adjust=FALSE,delete=TRUE)
dipper.psex.time.pentsex.time=mark(dipper.processed,dipper.ddl,
model.parameters=list(Phi=Phitime,p=pdot,
pent=pentsex.time,N=Nsex),invisible=FALSE,adjust=FALSE,delete=TRUE)
#
# Return model table and list of models
#
return(collect.models() )
}
dipper.popan.results=run.dipper.popan()
popan.derived(dipper.processed,dipper.popan.results)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.