popan.derived | R Documentation |
Computes estimates, standard errors, confidence intervals and var-cov matrix
for population size of each group at each occasion and the sum across groups
by occasion for POPAN models. If a marklist
is provided the estimates
are model averaged.
popan.derived(x,model,revised=TRUE,normal=TRUE,N=TRUE,NGross=TRUE,drop=FALSE) popan.Nt(Phi,pent,Ns,vc,time.intervals) popan.NGross(Phi,pent,Ns,vc,time.intervals)
x |
processed data list resulting from |
model |
a single mark POPAN model or a |
revised |
if TRUE, uses revised version of model averaged standard error eq 6.12; otherwise uses eq 4.9 of Burnham and Anderson (2002) |
normal |
if TRUE, uses confidence interval based on normal distribution; otherwise, uses log-normal |
N |
if TRUE, will return abundance estimates by group and occasion and total by occasion |
NGross |
if TRUE, will return gross abundance estimate per group |
drop |
if TRUE, models with any non-positive variance for betas are dropped |
Phi |
interval-specific survival estimates for each group |
pent |
occasion-specific prob of entry estimates (first computed by subtraction) for each group |
Ns |
group specific super-population estimate |
vc |
variance-covariance matrix of the real parameters |
time.intervals |
vector of time interval values |
popan.derived
computes all of the real parameters using
covariate.predictions
and handles all of the computation using
popan.Nt
. Description for functions popan.Nt
and
popan.NGross
are given here for completeness but it is not intended
that they be called directly.
If a model
is a marklist
of models, the values returned by
popan.derived
are model averaged using model weights in the
model.table
; otherwise, it returns the values for the specified
model.
popan.derived
returns a list with the following elements
depending on the values of N
and NGross
:
N - dataframe of estimates by group and occasion and se, lcl,ucl and group/occasion data N.vcv - variance-covariance matrix of abundance estimates in N Nbyocc - dataframe of estimates by occasion (summed across groups) and se, lcl,ucl and occasion data Nbyocc.vcv - variance-covariance matrix of abundance estimates in Nbyocc NGross - dataframe of gross abundance estimates by group and se, lcl,and ucl NGross.vcv - variance-covariance matrix of NGross abundance estimates
popan.Nt
returns a list with the following elements:
N - dataframe of estimates by group and occasion and se, lcl,ucl and group/occasion data N.vcv - variance-covariance matrix of abundance estimates in N
popan.NGross
returns a list with the following elements:
NGross - vector of gross abundance estimates by group vcv - variance-covariance matrix of abundance estimates in NGross
Jeff Laake
BURNHAM, K. P., AND D. R. ANDERSON. 2002. Model selection and multimodel inference. A practical information-theoretic approach. Springer, New York.
# This example is excluded from testing to reduce package check time # Example data(dipper) dipper.processed=process.data(dipper,model="POPAN",groups="sex") run.dipper.popan=function() { dipper.ddl=make.design.data(dipper.processed) Phidot=list(formula=~1) Phitime=list(formula=~time) pdot=list(formula=~1) ptime=list(formula=~time) pentsex.time=list(formula=~time) Nsex=list(formula=~sex) # # Run assortment of models # dipper.phisex.time.psex.time.pentsex.time=mark(dipper.processed, dipper.ddl,model.parameters=list(Phi=Phidot,p=ptime, pent=pentsex.time,N=Nsex),invisible=FALSE,adjust=FALSE,delete=TRUE) dipper.psex.time.pentsex.time=mark(dipper.processed,dipper.ddl, model.parameters=list(Phi=Phitime,p=pdot, pent=pentsex.time,N=Nsex),invisible=FALSE,adjust=FALSE,delete=TRUE) # # Return model table and list of models # return(collect.models() ) } dipper.popan.results=run.dipper.popan() popan.derived(dipper.processed,dipper.popan.results)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.