Description Usage Arguments Details Value Note Author(s) References See Also Examples
All kinds of predictor evaluations are performed using this function.
1 | performance(prediction.obj, measure, x.measure = "cutoff", ...)
|
prediction.obj |
An object of class |
measure |
Performance measure to use for the evaluation. A complete list
of the performance measures that are available for |
x.measure |
A second performance measure. If different from the default,
a two-dimensional curve, with |
... |
Optional arguments (specific to individual performance measures). |
Here is the list of available performance measures. Let Y and Yhat be random variables representing the class and the prediction for a randomly drawn sample, respectively. We denote by + and - the positive and negative class, respectively. Further, we use the following abbreviations for empirical quantities: P (\# positive samples), N (\# negative samples), TP (\# true positives), TN (\# true negatives), FP (\# false positives), FN (\# false negatives).
acc
:Accuracy. P(Yhat = Y). Estimated as: (TP+TN)/(P+N).
err
:Error rate. P(Yhat != Y). Estimated as: (FP+FN)/(P+N).
fpr
:False positive rate. P(Yhat = + | Y = -). Estimated as: FP/N.
fall
:Fallout. Same as fpr
.
tpr
:True positive rate. P(Yhat = + | Y = +). Estimated as: TP/P.
rec
:Recall. Same as tpr
.
sens
:Sensitivity. Same as tpr
.
fnr
:False negative rate. P(Yhat = - | Y = +). Estimated as: FN/P.
miss
:Miss. Same as fnr
.
tnr
:True negative rate. P(Yhat = - | Y = -).
spec
:Specificity. Same as tnr
.
ppv
:Positive predictive value. P(Y = + | Yhat = +). Estimated as: TP/(TP+FP).
prec
:Precision. Same as ppv
.
npv
:Negative predictive value. P(Y = - | Yhat = -). Estimated as: TN/(TN+FN).
pcfall
:Prediction-conditioned fallout. P(Y = - | Yhat = +). Estimated as: FP/(TP+FP).
pcmiss
:Prediction-conditioned miss. P(Y = + | Yhat = -). Estimated as: FN/(TN+FN).
rpp
:Rate of positive predictions. P(Yhat = +). Estimated as: (TP+FP)/(TP+FP+TN+FN).
rnp
:Rate of negative predictions. P(Yhat = -). Estimated as: (TN+FN)/(TP+FP+TN+FN).
phi
:Phi correlation coefficient. (TP*TN - FP*FN)/(sqrt((TP+FN)*(TN+FP)*(TP+FP)*(TN+FN))). Yields a number between -1 and 1, with 1 indicating a perfect prediction, 0 indicating a random prediction. Values below 0 indicate a worse than random prediction.
mat
:Matthews correlation coefficient. Same as phi
.
mi
:Mutual information. I(Yhat, Y) := H(Y) - H(Y | Yhat), where H is the (conditional) entropy. Entropies are estimated naively (no bias correction).
chisq
:Chi square test statistic. ?chisq.test
for details. Note that R might raise a warning if the sample size
is too small.
odds
:Odds ratio. (TP*TN)/(FN*FP). Note that odds ratio produces Inf or NA values for all cutoffs corresponding to FN=0 or FP=0. This can substantially decrease the plotted cutoff region.
lift
:Lift value. P(Yhat = + | Y = +)/P(Yhat = +).
f
:Precision-recall F measure (van Rijsbergen, 1979). Weighted harmonic mean of precision (P) and recall (R). F = 1/ (alpha*1/P + (1-alpha)*1/R). If alpha=1/2, the mean is balanced. A frequent equivalent formulation is F = (beta^2+1) * P * R / (R + beta^2 * P). In this formulation, the mean is balanced if beta=1. Currently, ROCR only accepts the alpha version as input (e.g. alpha=0.5). If no value for alpha is given, the mean will be balanced by default.
rch
:ROC convex hull. A ROC (=tpr
vs fpr
) curve
with concavities (which represent suboptimal choices of cutoff) removed
(Fawcett 2001). Since the result is already a parametric performance
curve, it cannot be used in combination with other measures.
auc
:Area under the ROC curve. This is equal to the value of the
Wilcoxon-Mann-Whitney test statistic and also the probability that the
classifier will score are randomly drawn positive sample higher than a
randomly drawn negative sample. Since the output of
auc
is cutoff-independent, this
measure cannot be combined with other measures into a parametric
curve. The partial area under the ROC curve up to a given false
positive rate can be calculated by passing the optional parameter
fpr.stop=0.5
(or any other value between 0 and 1) to
performance
.
aucpr
:Area under the Precision/Recall curve. Since the output
of aucpr
is cutoff-independent, this measure cannot be combined
with other measures into a parametric curve.
prbe
:Precision-recall break-even point. The cutoff(s) where
precision and recall are equal. At this point, positive and negative
predictions are made at the same rate as their prevalence in the
data. Since the output of
prbe
is just a cutoff-independent scalar, this
measure cannot be combined with other measures into a parametric curve.
cal
:Calibration error. The calibration error is the
absolute difference between predicted confidence and actual reliability. This
error is estimated at all cutoffs by sliding a window across the
range of possible cutoffs. The default window size of 100 can be
adjusted by passing the optional parameter window.size=200
to performance
. E.g., if for several
positive samples the output of the classifier is around 0.75, you might
expect from a well-calibrated classifier that the fraction of them
which is correctly predicted as positive is also around 0.75. In a
well-calibrated classifier, the probabilistic confidence estimates
are realistic. Only for use with
probabilistic output (i.e. scores between 0 and 1).
mxe
:Mean cross-entropy. Only for use with
probabilistic output. MXE := - 1/(P+N) ∑_{y_i=+}
ln(yhat_i) + ∑_{y_i=-} ln(1-yhat_i). Since the output of
mxe
is just a cutoff-independent scalar, this
measure cannot be combined with other measures into a parametric curve.
rmse
:Root-mean-squared error. Only for use with
numerical class labels. RMSE := sqrt(1/(P+N) ∑_i (y_i -
yhat_i)^2). Since the output of
rmse
is just a cutoff-independent scalar, this
measure cannot be combined with other measures into a parametric curve.
sar
:Score combinining performance measures of different characteristics, in the attempt of creating a more "robust" measure (cf. Caruana R., ROCAI2004): SAR = 1/3 * ( Accuracy + Area under the ROC curve + Root mean-squared error ).
ecost
:Expected cost. For details on cost curves,
cf. Drummond&Holte 2000,2004. ecost
has an obligatory x
axis, the so-called 'probability-cost function'; thus it cannot be
combined with other measures. While using ecost
one is
interested in the lower envelope of a set of lines, it might be
instructive to plot the whole set of lines in addition to the lower
envelope. An example is given in demo(ROCR)
.
cost
:Cost of a classifier when
class-conditional misclassification costs are explicitly given.
Accepts the optional parameters cost.fp
and
cost.fn
, by which the costs for false positives and
negatives can be adjusted, respectively. By default, both are set
to 1.
An S4 object of class performance
.
Here is how to call performance()
to create some standard
evaluation plots:
measure="tpr", x.measure="fpr".
measure="prec", x.measure="rec".
measure="sens", x.measure="spec".
measure="lift", x.measure="rpp".
Tobias Sing tobias.sing@gmail.com, Oliver Sander osander@gmail.com
A detailed list of references can be found on the ROCR homepage at http://rocr.bioinf.mpi-sb.mpg.de.
prediction
,
prediction-class
,
performance-class
,
plot.performance
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | # computing a simple ROC curve (x-axis: fpr, y-axis: tpr)
library(ROCR)
data(ROCR.simple)
pred <- prediction( ROCR.simple$predictions, ROCR.simple$labels)
pred
perf <- performance(pred,"tpr","fpr")
perf
plot(perf)
# precision/recall curve (x-axis: recall, y-axis: precision)
perf <- performance(pred, "prec", "rec")
perf
plot(perf)
# sensitivity/specificity curve (x-axis: specificity,
# y-axis: sensitivity)
perf <- performance(pred, "sens", "spec")
perf
plot(perf)
|
Loading required package: gplots
Attaching package: 'gplots'
The following object is masked from 'package:stats':
lowess
An object of class "prediction"
Slot "predictions":
[[1]]
[1] 0.612547843 0.364270971 0.432136142 0.140291078 0.384895941 0.244415489
[7] 0.970641299 0.890172812 0.781781371 0.868751832 0.716680598 0.360168796
[13] 0.547983407 0.385240464 0.423739359 0.101699993 0.628095575 0.744769966
[19] 0.657732644 0.490119891 0.072369921 0.172741714 0.105722115 0.890078186
[25] 0.945548941 0.984667270 0.360180429 0.448687336 0.014823599 0.543533783
[31] 0.292368449 0.701561487 0.715459280 0.714985914 0.120604738 0.319672178
[37] 0.911723615 0.757325590 0.090988280 0.529402244 0.257402979 0.589909284
[43] 0.708412104 0.326672910 0.086546283 0.879459891 0.362693564 0.230157183
[49] 0.779771989 0.876086217 0.353281048 0.212014560 0.703293499 0.689075677
[55] 0.627012496 0.240911145 0.402801992 0.134794140 0.120473353 0.665444679
[61] 0.536339509 0.623494622 0.885179651 0.353777439 0.408939895 0.265686095
[67] 0.932159806 0.248500489 0.858876675 0.491735594 0.151350957 0.694457482
[73] 0.496513160 0.123504905 0.499788081 0.310718619 0.907651100 0.340078180
[79] 0.195097957 0.371936985 0.517308606 0.419560072 0.865639036 0.018527600
[85] 0.539086009 0.005422562 0.772728821 0.703885141 0.348213542 0.277656869
[91] 0.458674210 0.059045866 0.133257805 0.083685883 0.531958184 0.429650397
[97] 0.717845453 0.537091350 0.212404891 0.930846938 0.083048377 0.468610247
[103] 0.393378108 0.663367560 0.349540913 0.194398425 0.844415442 0.959417835
[109] 0.211378771 0.943432189 0.598162949 0.834803976 0.576836208 0.380396459
[115] 0.161874325 0.912325837 0.642933593 0.392173971 0.122284044 0.586857799
[121] 0.180631658 0.085993218 0.700501359 0.060413627 0.531464015 0.084254795
[127] 0.448484671 0.938583020 0.531006532 0.785213140 0.905121019 0.748438143
[133] 0.605235403 0.842974300 0.835981859 0.364288579 0.492596896 0.488179708
[139] 0.259278968 0.991096434 0.757364019 0.288258273 0.773336236 0.040906997
[145] 0.110241034 0.760726142 0.984599159 0.253271061 0.697235328 0.620501132
[151] 0.814586047 0.300973098 0.378092079 0.016694412 0.698826511 0.658692553
[157] 0.470206008 0.501489336 0.239143340 0.050999138 0.088450984 0.107031842
[163] 0.746588080 0.480100183 0.336592126 0.579511087 0.118555284 0.233160827
[169] 0.461150807 0.370549294 0.770178504 0.537336015 0.463227453 0.790240205
[175] 0.883431431 0.745110673 0.007746305 0.012653524 0.868331219 0.439399995
[181] 0.540221346 0.567043171 0.035815400 0.806543942 0.248707470 0.696702150
[187] 0.081439129 0.336315317 0.126480399 0.636728451 0.030235062 0.268138293
[193] 0.983494405 0.728536415 0.739554341 0.522384507 0.858970526 0.383807972
[199] 0.606960209 0.138387070
Slot "labels":
[[1]]
[1] 1 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 1 1 1 0 0 0 0 1 0 1 0 0 1 1 0 1 1 1 0 0 1
[38] 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 1 0 0 0 1 0 1 0 0 1 0 0
[75] 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0 1 0 0 1 0 0 1 1
[112] 1 0 0 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 1 1 0 1 0 1 0 1 1
[149] 1 1 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 0
[186] 0 0 1 0 0 0 1 0 1 1 0 1 0 1 0
Levels: 0 < 1
Slot "cutoffs":
[[1]]
[1] Inf 0.991096434 0.984667270 0.984599159 0.983494405 0.970641299
[7] 0.959417835 0.945548941 0.943432189 0.938583020 0.932159806 0.930846938
[13] 0.912325837 0.911723615 0.907651100 0.905121019 0.890172812 0.890078186
[19] 0.885179651 0.883431431 0.879459891 0.876086217 0.868751832 0.868331219
[25] 0.865639036 0.858970526 0.858876675 0.844415442 0.842974300 0.835981859
[31] 0.834803976 0.814586047 0.806543942 0.790240205 0.785213140 0.781781371
[37] 0.779771989 0.773336236 0.772728821 0.770178504 0.760726142 0.757364019
[43] 0.757325590 0.748438143 0.746588080 0.745110673 0.744769966 0.739554341
[49] 0.728536415 0.717845453 0.716680598 0.715459280 0.714985914 0.708412104
[55] 0.703885141 0.703293499 0.701561487 0.700501359 0.698826511 0.697235328
[61] 0.696702150 0.694457482 0.689075677 0.665444679 0.663367560 0.658692553
[67] 0.657732644 0.642933593 0.636728451 0.628095575 0.627012496 0.623494622
[73] 0.620501132 0.612547843 0.606960209 0.605235403 0.598162949 0.589909284
[79] 0.586857799 0.579511087 0.576836208 0.567043171 0.547983407 0.543533783
[85] 0.540221346 0.539086009 0.537336015 0.537091350 0.536339509 0.531958184
[91] 0.531464015 0.531006532 0.529402244 0.522384507 0.517308606 0.501489336
[97] 0.499788081 0.496513160 0.492596896 0.491735594 0.490119891 0.488179708
[103] 0.480100183 0.470206008 0.468610247 0.463227453 0.461150807 0.458674210
[109] 0.448687336 0.448484671 0.439399995 0.432136142 0.429650397 0.423739359
[115] 0.419560072 0.408939895 0.402801992 0.393378108 0.392173971 0.385240464
[121] 0.384895941 0.383807972 0.380396459 0.378092079 0.371936985 0.370549294
[127] 0.364288579 0.364270971 0.362693564 0.360180429 0.360168796 0.353777439
[133] 0.353281048 0.349540913 0.348213542 0.340078180 0.336592126 0.336315317
[139] 0.326672910 0.319672178 0.310718619 0.300973098 0.292368449 0.288258273
[145] 0.277656869 0.268138293 0.265686095 0.259278968 0.257402979 0.253271061
[151] 0.248707470 0.248500489 0.244415489 0.240911145 0.239143340 0.233160827
[157] 0.230157183 0.212404891 0.212014560 0.211378771 0.195097957 0.194398425
[163] 0.180631658 0.172741714 0.161874325 0.151350957 0.140291078 0.138387070
[169] 0.134794140 0.133257805 0.126480399 0.123504905 0.122284044 0.120604738
[175] 0.120473353 0.118555284 0.110241034 0.107031842 0.105722115 0.101699993
[181] 0.090988280 0.088450984 0.086546283 0.085993218 0.084254795 0.083685883
[187] 0.083048377 0.081439129 0.072369921 0.060413627 0.059045866 0.050999138
[193] 0.040906997 0.035815400 0.030235062 0.018527600 0.016694412 0.014823599
[199] 0.012653524 0.007746305 0.005422562
Slot "fp":
[[1]]
[1] 0 0 0 0 1 1 2 3 3 3 3 3 3 3 4 4 4 4
[19] 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5
[37] 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 8
[55] 9 9 9 9 9 9 10 10 11 11 11 11 11 11 12 12 12 12
[73] 12 12 12 13 13 13 13 13 14 14 14 14 14 15 15 15 15 15
[91] 15 15 15 16 16 16 17 18 19 20 21 22 23 24 25 26 27 28
[109] 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
[127] 47 47 48 49 50 51 51 52 53 54 55 55 55 56 57 58 59 60
[145] 60 60 61 62 63 63 64 65 65 66 67 68 68 69 70 71 72 73
[163] 74 75 76 77 78 79 80 80 81 82 83 84 85 86 86 87 88 89
[181] 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 106
[199] 106 107 107
Slot "tp":
[[1]]
[1] 0 1 2 3 3 4 4 4 5 6 7 8 9 10 10 11 12 13 14 15 16 17 17 18 19
[26] 20 21 22 23 24 25 26 27 28 29 30 30 31 32 33 33 34 35 36 37 38 39 40 41 42
[51] 43 44 45 45 45 46 47 48 49 50 50 51 51 52 53 54 55 56 56 57 58 59 60 61 62
[76] 62 63 64 65 66 66 67 68 69 70 70 71 72 73 74 75 76 77 77 78 79 79 79 79 79
[101] 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79
[126] 79 79 80 80 80 80 80 81 81 81 81 81 82 83 83 83 83 83 83 84 85 85 85 85 86
[151] 86 86 87 87 87 87 88 88 88 88 88 88 88 88 88 88 88 88 88 89 89 89 89 89 89
[176] 89 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 91 92 92
[201] 93
Slot "tn":
[[1]]
[1] 107 107 107 107 106 106 105 104 104 104 104 104 104 104 103 103 103 103
[19] 103 103 103 103 102 102 102 102 102 102 102 102 102 102 102 102 102 102
[37] 101 101 101 101 100 100 100 100 100 100 100 100 100 100 100 100 100 99
[55] 98 98 98 98 98 98 97 97 96 96 96 96 96 96 95 95 95 95
[73] 95 95 95 94 94 94 94 94 93 93 93 93 93 92 92 92 92 92
[91] 92 92 92 91 91 91 90 89 88 87 86 85 84 83 82 81 80 79
[109] 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61
[127] 60 60 59 58 57 56 56 55 54 53 52 52 52 51 50 49 48 47
[145] 47 47 46 45 44 44 43 42 42 41 40 39 39 38 37 36 35 34
[163] 33 32 31 30 29 28 27 27 26 25 24 23 22 21 21 20 19 18
[181] 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 1
[199] 1 0 0
Slot "fn":
[[1]]
[1] 93 92 91 90 90 89 89 89 88 87 86 85 84 83 83 82 81 80 79 78 77 76 76 75 74
[26] 73 72 71 70 69 68 67 66 65 64 63 63 62 61 60 60 59 58 57 56 55 54 53 52 51
[51] 50 49 48 48 48 47 46 45 44 43 43 42 42 41 40 39 38 37 37 36 35 34 33 32 31
[76] 31 30 29 28 27 27 26 25 24 23 23 22 21 20 19 18 17 16 16 15 14 14 14 14 14
[101] 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
[126] 14 14 13 13 13 13 13 12 12 12 12 12 11 10 10 10 10 10 10 9 8 8 8 8 7
[151] 7 7 6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4
[176] 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 1 1
[201] 0
Slot "n.pos":
[[1]]
[1] 93
Slot "n.neg":
[[1]]
[1] 107
Slot "n.pos.pred":
[[1]]
[1] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
[19] 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
[37] 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
[55] 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
[73] 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
[91] 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
[109] 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
[127] 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
[145] 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
[163] 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
[181] 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
[199] 198 199 200
Slot "n.neg.pred":
[[1]]
[1] 200 199 198 197 196 195 194 193 192 191 190 189 188 187 186 185 184 183
[19] 182 181 180 179 178 177 176 175 174 173 172 171 170 169 168 167 166 165
[37] 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147
[55] 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129
[73] 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111
[91] 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93
[109] 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75
[127] 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57
[145] 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39
[163] 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21
[181] 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3
[199] 2 1 0
An object of class "performance"
Slot "x.name":
[1] "False positive rate"
Slot "y.name":
[1] "True positive rate"
Slot "alpha.name":
[1] "Cutoff"
Slot "x.values":
[[1]]
[1] 0.000000000 0.000000000 0.000000000 0.000000000 0.009345794 0.009345794
[7] 0.018691589 0.028037383 0.028037383 0.028037383 0.028037383 0.028037383
[13] 0.028037383 0.028037383 0.037383178 0.037383178 0.037383178 0.037383178
[19] 0.037383178 0.037383178 0.037383178 0.037383178 0.046728972 0.046728972
[25] 0.046728972 0.046728972 0.046728972 0.046728972 0.046728972 0.046728972
[31] 0.046728972 0.046728972 0.046728972 0.046728972 0.046728972 0.046728972
[37] 0.056074766 0.056074766 0.056074766 0.056074766 0.065420561 0.065420561
[43] 0.065420561 0.065420561 0.065420561 0.065420561 0.065420561 0.065420561
[49] 0.065420561 0.065420561 0.065420561 0.065420561 0.065420561 0.074766355
[55] 0.084112150 0.084112150 0.084112150 0.084112150 0.084112150 0.084112150
[61] 0.093457944 0.093457944 0.102803738 0.102803738 0.102803738 0.102803738
[67] 0.102803738 0.102803738 0.112149533 0.112149533 0.112149533 0.112149533
[73] 0.112149533 0.112149533 0.112149533 0.121495327 0.121495327 0.121495327
[79] 0.121495327 0.121495327 0.130841121 0.130841121 0.130841121 0.130841121
[85] 0.130841121 0.140186916 0.140186916 0.140186916 0.140186916 0.140186916
[91] 0.140186916 0.140186916 0.140186916 0.149532710 0.149532710 0.149532710
[97] 0.158878505 0.168224299 0.177570093 0.186915888 0.196261682 0.205607477
[103] 0.214953271 0.224299065 0.233644860 0.242990654 0.252336449 0.261682243
[109] 0.271028037 0.280373832 0.289719626 0.299065421 0.308411215 0.317757009
[115] 0.327102804 0.336448598 0.345794393 0.355140187 0.364485981 0.373831776
[121] 0.383177570 0.392523364 0.401869159 0.411214953 0.420560748 0.429906542
[127] 0.439252336 0.439252336 0.448598131 0.457943925 0.467289720 0.476635514
[133] 0.476635514 0.485981308 0.495327103 0.504672897 0.514018692 0.514018692
[139] 0.514018692 0.523364486 0.532710280 0.542056075 0.551401869 0.560747664
[145] 0.560747664 0.560747664 0.570093458 0.579439252 0.588785047 0.588785047
[151] 0.598130841 0.607476636 0.607476636 0.616822430 0.626168224 0.635514019
[157] 0.635514019 0.644859813 0.654205607 0.663551402 0.672897196 0.682242991
[163] 0.691588785 0.700934579 0.710280374 0.719626168 0.728971963 0.738317757
[169] 0.747663551 0.747663551 0.757009346 0.766355140 0.775700935 0.785046729
[175] 0.794392523 0.803738318 0.803738318 0.813084112 0.822429907 0.831775701
[181] 0.841121495 0.850467290 0.859813084 0.869158879 0.878504673 0.887850467
[187] 0.897196262 0.906542056 0.915887850 0.925233645 0.934579439 0.943925234
[193] 0.953271028 0.962616822 0.971962617 0.981308411 0.990654206 0.990654206
[199] 0.990654206 1.000000000 1.000000000
Slot "y.values":
[[1]]
[1] 0.00000000 0.01075269 0.02150538 0.03225806 0.03225806 0.04301075
[7] 0.04301075 0.04301075 0.05376344 0.06451613 0.07526882 0.08602151
[13] 0.09677419 0.10752688 0.10752688 0.11827957 0.12903226 0.13978495
[19] 0.15053763 0.16129032 0.17204301 0.18279570 0.18279570 0.19354839
[25] 0.20430108 0.21505376 0.22580645 0.23655914 0.24731183 0.25806452
[31] 0.26881720 0.27956989 0.29032258 0.30107527 0.31182796 0.32258065
[37] 0.32258065 0.33333333 0.34408602 0.35483871 0.35483871 0.36559140
[43] 0.37634409 0.38709677 0.39784946 0.40860215 0.41935484 0.43010753
[49] 0.44086022 0.45161290 0.46236559 0.47311828 0.48387097 0.48387097
[55] 0.48387097 0.49462366 0.50537634 0.51612903 0.52688172 0.53763441
[61] 0.53763441 0.54838710 0.54838710 0.55913978 0.56989247 0.58064516
[67] 0.59139785 0.60215054 0.60215054 0.61290323 0.62365591 0.63440860
[73] 0.64516129 0.65591398 0.66666667 0.66666667 0.67741935 0.68817204
[79] 0.69892473 0.70967742 0.70967742 0.72043011 0.73118280 0.74193548
[85] 0.75268817 0.75268817 0.76344086 0.77419355 0.78494624 0.79569892
[91] 0.80645161 0.81720430 0.82795699 0.82795699 0.83870968 0.84946237
[97] 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237
[103] 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237
[109] 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237
[115] 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237
[121] 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237
[127] 0.84946237 0.86021505 0.86021505 0.86021505 0.86021505 0.86021505
[133] 0.87096774 0.87096774 0.87096774 0.87096774 0.87096774 0.88172043
[139] 0.89247312 0.89247312 0.89247312 0.89247312 0.89247312 0.89247312
[145] 0.90322581 0.91397849 0.91397849 0.91397849 0.91397849 0.92473118
[151] 0.92473118 0.92473118 0.93548387 0.93548387 0.93548387 0.93548387
[157] 0.94623656 0.94623656 0.94623656 0.94623656 0.94623656 0.94623656
[163] 0.94623656 0.94623656 0.94623656 0.94623656 0.94623656 0.94623656
[169] 0.94623656 0.95698925 0.95698925 0.95698925 0.95698925 0.95698925
[175] 0.95698925 0.95698925 0.96774194 0.96774194 0.96774194 0.96774194
[181] 0.96774194 0.96774194 0.96774194 0.96774194 0.96774194 0.96774194
[187] 0.96774194 0.96774194 0.96774194 0.96774194 0.96774194 0.96774194
[193] 0.96774194 0.96774194 0.96774194 0.96774194 0.96774194 0.97849462
[199] 0.98924731 0.98924731 1.00000000
Slot "alpha.values":
[[1]]
[1] Inf 0.991096434 0.984667270 0.984599159 0.983494405 0.970641299
[7] 0.959417835 0.945548941 0.943432189 0.938583020 0.932159806 0.930846938
[13] 0.912325837 0.911723615 0.907651100 0.905121019 0.890172812 0.890078186
[19] 0.885179651 0.883431431 0.879459891 0.876086217 0.868751832 0.868331219
[25] 0.865639036 0.858970526 0.858876675 0.844415442 0.842974300 0.835981859
[31] 0.834803976 0.814586047 0.806543942 0.790240205 0.785213140 0.781781371
[37] 0.779771989 0.773336236 0.772728821 0.770178504 0.760726142 0.757364019
[43] 0.757325590 0.748438143 0.746588080 0.745110673 0.744769966 0.739554341
[49] 0.728536415 0.717845453 0.716680598 0.715459280 0.714985914 0.708412104
[55] 0.703885141 0.703293499 0.701561487 0.700501359 0.698826511 0.697235328
[61] 0.696702150 0.694457482 0.689075677 0.665444679 0.663367560 0.658692553
[67] 0.657732644 0.642933593 0.636728451 0.628095575 0.627012496 0.623494622
[73] 0.620501132 0.612547843 0.606960209 0.605235403 0.598162949 0.589909284
[79] 0.586857799 0.579511087 0.576836208 0.567043171 0.547983407 0.543533783
[85] 0.540221346 0.539086009 0.537336015 0.537091350 0.536339509 0.531958184
[91] 0.531464015 0.531006532 0.529402244 0.522384507 0.517308606 0.501489336
[97] 0.499788081 0.496513160 0.492596896 0.491735594 0.490119891 0.488179708
[103] 0.480100183 0.470206008 0.468610247 0.463227453 0.461150807 0.458674210
[109] 0.448687336 0.448484671 0.439399995 0.432136142 0.429650397 0.423739359
[115] 0.419560072 0.408939895 0.402801992 0.393378108 0.392173971 0.385240464
[121] 0.384895941 0.383807972 0.380396459 0.378092079 0.371936985 0.370549294
[127] 0.364288579 0.364270971 0.362693564 0.360180429 0.360168796 0.353777439
[133] 0.353281048 0.349540913 0.348213542 0.340078180 0.336592126 0.336315317
[139] 0.326672910 0.319672178 0.310718619 0.300973098 0.292368449 0.288258273
[145] 0.277656869 0.268138293 0.265686095 0.259278968 0.257402979 0.253271061
[151] 0.248707470 0.248500489 0.244415489 0.240911145 0.239143340 0.233160827
[157] 0.230157183 0.212404891 0.212014560 0.211378771 0.195097957 0.194398425
[163] 0.180631658 0.172741714 0.161874325 0.151350957 0.140291078 0.138387070
[169] 0.134794140 0.133257805 0.126480399 0.123504905 0.122284044 0.120604738
[175] 0.120473353 0.118555284 0.110241034 0.107031842 0.105722115 0.101699993
[181] 0.090988280 0.088450984 0.086546283 0.085993218 0.084254795 0.083685883
[187] 0.083048377 0.081439129 0.072369921 0.060413627 0.059045866 0.050999138
[193] 0.040906997 0.035815400 0.030235062 0.018527600 0.016694412 0.014823599
[199] 0.012653524 0.007746305 0.005422562
An object of class "performance"
Slot "x.name":
[1] "Recall"
Slot "y.name":
[1] "Precision"
Slot "alpha.name":
[1] "Cutoff"
Slot "x.values":
[[1]]
[1] 0.00000000 0.01075269 0.02150538 0.03225806 0.03225806 0.04301075
[7] 0.04301075 0.04301075 0.05376344 0.06451613 0.07526882 0.08602151
[13] 0.09677419 0.10752688 0.10752688 0.11827957 0.12903226 0.13978495
[19] 0.15053763 0.16129032 0.17204301 0.18279570 0.18279570 0.19354839
[25] 0.20430108 0.21505376 0.22580645 0.23655914 0.24731183 0.25806452
[31] 0.26881720 0.27956989 0.29032258 0.30107527 0.31182796 0.32258065
[37] 0.32258065 0.33333333 0.34408602 0.35483871 0.35483871 0.36559140
[43] 0.37634409 0.38709677 0.39784946 0.40860215 0.41935484 0.43010753
[49] 0.44086022 0.45161290 0.46236559 0.47311828 0.48387097 0.48387097
[55] 0.48387097 0.49462366 0.50537634 0.51612903 0.52688172 0.53763441
[61] 0.53763441 0.54838710 0.54838710 0.55913978 0.56989247 0.58064516
[67] 0.59139785 0.60215054 0.60215054 0.61290323 0.62365591 0.63440860
[73] 0.64516129 0.65591398 0.66666667 0.66666667 0.67741935 0.68817204
[79] 0.69892473 0.70967742 0.70967742 0.72043011 0.73118280 0.74193548
[85] 0.75268817 0.75268817 0.76344086 0.77419355 0.78494624 0.79569892
[91] 0.80645161 0.81720430 0.82795699 0.82795699 0.83870968 0.84946237
[97] 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237
[103] 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237
[109] 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237
[115] 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237
[121] 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237
[127] 0.84946237 0.86021505 0.86021505 0.86021505 0.86021505 0.86021505
[133] 0.87096774 0.87096774 0.87096774 0.87096774 0.87096774 0.88172043
[139] 0.89247312 0.89247312 0.89247312 0.89247312 0.89247312 0.89247312
[145] 0.90322581 0.91397849 0.91397849 0.91397849 0.91397849 0.92473118
[151] 0.92473118 0.92473118 0.93548387 0.93548387 0.93548387 0.93548387
[157] 0.94623656 0.94623656 0.94623656 0.94623656 0.94623656 0.94623656
[163] 0.94623656 0.94623656 0.94623656 0.94623656 0.94623656 0.94623656
[169] 0.94623656 0.95698925 0.95698925 0.95698925 0.95698925 0.95698925
[175] 0.95698925 0.95698925 0.96774194 0.96774194 0.96774194 0.96774194
[181] 0.96774194 0.96774194 0.96774194 0.96774194 0.96774194 0.96774194
[187] 0.96774194 0.96774194 0.96774194 0.96774194 0.96774194 0.96774194
[193] 0.96774194 0.96774194 0.96774194 0.96774194 0.96774194 0.97849462
[199] 0.98924731 0.98924731 1.00000000
Slot "y.values":
[[1]]
[1] NaN 1.0000000 1.0000000 1.0000000 0.7500000 0.8000000 0.6666667
[8] 0.5714286 0.6250000 0.6666667 0.7000000 0.7272727 0.7500000 0.7692308
[15] 0.7142857 0.7333333 0.7500000 0.7647059 0.7777778 0.7894737 0.8000000
[22] 0.8095238 0.7727273 0.7826087 0.7916667 0.8000000 0.8076923 0.8148148
[29] 0.8214286 0.8275862 0.8333333 0.8387097 0.8437500 0.8484848 0.8529412
[36] 0.8571429 0.8333333 0.8378378 0.8421053 0.8461538 0.8250000 0.8292683
[43] 0.8333333 0.8372093 0.8409091 0.8444444 0.8478261 0.8510638 0.8541667
[50] 0.8571429 0.8600000 0.8627451 0.8653846 0.8490566 0.8333333 0.8363636
[57] 0.8392857 0.8421053 0.8448276 0.8474576 0.8333333 0.8360656 0.8225806
[64] 0.8253968 0.8281250 0.8307692 0.8333333 0.8358209 0.8235294 0.8260870
[71] 0.8285714 0.8309859 0.8333333 0.8356164 0.8378378 0.8266667 0.8289474
[78] 0.8311688 0.8333333 0.8354430 0.8250000 0.8271605 0.8292683 0.8313253
[85] 0.8333333 0.8235294 0.8255814 0.8275862 0.8295455 0.8314607 0.8333333
[92] 0.8351648 0.8369565 0.8279570 0.8297872 0.8315789 0.8229167 0.8144330
[99] 0.8061224 0.7979798 0.7900000 0.7821782 0.7745098 0.7669903 0.7596154
[106] 0.7523810 0.7452830 0.7383178 0.7314815 0.7247706 0.7181818 0.7117117
[113] 0.7053571 0.6991150 0.6929825 0.6869565 0.6810345 0.6752137 0.6694915
[120] 0.6638655 0.6583333 0.6528926 0.6475410 0.6422764 0.6370968 0.6320000
[127] 0.6269841 0.6299213 0.6250000 0.6201550 0.6153846 0.6106870 0.6136364
[134] 0.6090226 0.6044776 0.6000000 0.5955882 0.5985401 0.6014493 0.5971223
[141] 0.5928571 0.5886525 0.5845070 0.5804196 0.5833333 0.5862069 0.5821918
[148] 0.5782313 0.5743243 0.5771812 0.5733333 0.5695364 0.5723684 0.5686275
[155] 0.5649351 0.5612903 0.5641026 0.5605096 0.5569620 0.5534591 0.5500000
[162] 0.5465839 0.5432099 0.5398773 0.5365854 0.5333333 0.5301205 0.5269461
[169] 0.5238095 0.5266272 0.5235294 0.5204678 0.5174419 0.5144509 0.5114943
[176] 0.5085714 0.5113636 0.5084746 0.5056180 0.5027933 0.5000000 0.4972376
[183] 0.4945055 0.4918033 0.4891304 0.4864865 0.4838710 0.4812834 0.4787234
[190] 0.4761905 0.4736842 0.4712042 0.4687500 0.4663212 0.4639175 0.4615385
[197] 0.4591837 0.4619289 0.4646465 0.4623116 0.4650000
Slot "alpha.values":
[[1]]
[1] Inf 0.991096434 0.984667270 0.984599159 0.983494405 0.970641299
[7] 0.959417835 0.945548941 0.943432189 0.938583020 0.932159806 0.930846938
[13] 0.912325837 0.911723615 0.907651100 0.905121019 0.890172812 0.890078186
[19] 0.885179651 0.883431431 0.879459891 0.876086217 0.868751832 0.868331219
[25] 0.865639036 0.858970526 0.858876675 0.844415442 0.842974300 0.835981859
[31] 0.834803976 0.814586047 0.806543942 0.790240205 0.785213140 0.781781371
[37] 0.779771989 0.773336236 0.772728821 0.770178504 0.760726142 0.757364019
[43] 0.757325590 0.748438143 0.746588080 0.745110673 0.744769966 0.739554341
[49] 0.728536415 0.717845453 0.716680598 0.715459280 0.714985914 0.708412104
[55] 0.703885141 0.703293499 0.701561487 0.700501359 0.698826511 0.697235328
[61] 0.696702150 0.694457482 0.689075677 0.665444679 0.663367560 0.658692553
[67] 0.657732644 0.642933593 0.636728451 0.628095575 0.627012496 0.623494622
[73] 0.620501132 0.612547843 0.606960209 0.605235403 0.598162949 0.589909284
[79] 0.586857799 0.579511087 0.576836208 0.567043171 0.547983407 0.543533783
[85] 0.540221346 0.539086009 0.537336015 0.537091350 0.536339509 0.531958184
[91] 0.531464015 0.531006532 0.529402244 0.522384507 0.517308606 0.501489336
[97] 0.499788081 0.496513160 0.492596896 0.491735594 0.490119891 0.488179708
[103] 0.480100183 0.470206008 0.468610247 0.463227453 0.461150807 0.458674210
[109] 0.448687336 0.448484671 0.439399995 0.432136142 0.429650397 0.423739359
[115] 0.419560072 0.408939895 0.402801992 0.393378108 0.392173971 0.385240464
[121] 0.384895941 0.383807972 0.380396459 0.378092079 0.371936985 0.370549294
[127] 0.364288579 0.364270971 0.362693564 0.360180429 0.360168796 0.353777439
[133] 0.353281048 0.349540913 0.348213542 0.340078180 0.336592126 0.336315317
[139] 0.326672910 0.319672178 0.310718619 0.300973098 0.292368449 0.288258273
[145] 0.277656869 0.268138293 0.265686095 0.259278968 0.257402979 0.253271061
[151] 0.248707470 0.248500489 0.244415489 0.240911145 0.239143340 0.233160827
[157] 0.230157183 0.212404891 0.212014560 0.211378771 0.195097957 0.194398425
[163] 0.180631658 0.172741714 0.161874325 0.151350957 0.140291078 0.138387070
[169] 0.134794140 0.133257805 0.126480399 0.123504905 0.122284044 0.120604738
[175] 0.120473353 0.118555284 0.110241034 0.107031842 0.105722115 0.101699993
[181] 0.090988280 0.088450984 0.086546283 0.085993218 0.084254795 0.083685883
[187] 0.083048377 0.081439129 0.072369921 0.060413627 0.059045866 0.050999138
[193] 0.040906997 0.035815400 0.030235062 0.018527600 0.016694412 0.014823599
[199] 0.012653524 0.007746305 0.005422562
An object of class "performance"
Slot "x.name":
[1] "Specificity"
Slot "y.name":
[1] "Sensitivity"
Slot "alpha.name":
[1] "Cutoff"
Slot "x.values":
[[1]]
[1] 1.000000000 1.000000000 1.000000000 1.000000000 0.990654206 0.990654206
[7] 0.981308411 0.971962617 0.971962617 0.971962617 0.971962617 0.971962617
[13] 0.971962617 0.971962617 0.962616822 0.962616822 0.962616822 0.962616822
[19] 0.962616822 0.962616822 0.962616822 0.962616822 0.953271028 0.953271028
[25] 0.953271028 0.953271028 0.953271028 0.953271028 0.953271028 0.953271028
[31] 0.953271028 0.953271028 0.953271028 0.953271028 0.953271028 0.953271028
[37] 0.943925234 0.943925234 0.943925234 0.943925234 0.934579439 0.934579439
[43] 0.934579439 0.934579439 0.934579439 0.934579439 0.934579439 0.934579439
[49] 0.934579439 0.934579439 0.934579439 0.934579439 0.934579439 0.925233645
[55] 0.915887850 0.915887850 0.915887850 0.915887850 0.915887850 0.915887850
[61] 0.906542056 0.906542056 0.897196262 0.897196262 0.897196262 0.897196262
[67] 0.897196262 0.897196262 0.887850467 0.887850467 0.887850467 0.887850467
[73] 0.887850467 0.887850467 0.887850467 0.878504673 0.878504673 0.878504673
[79] 0.878504673 0.878504673 0.869158879 0.869158879 0.869158879 0.869158879
[85] 0.869158879 0.859813084 0.859813084 0.859813084 0.859813084 0.859813084
[91] 0.859813084 0.859813084 0.859813084 0.850467290 0.850467290 0.850467290
[97] 0.841121495 0.831775701 0.822429907 0.813084112 0.803738318 0.794392523
[103] 0.785046729 0.775700935 0.766355140 0.757009346 0.747663551 0.738317757
[109] 0.728971963 0.719626168 0.710280374 0.700934579 0.691588785 0.682242991
[115] 0.672897196 0.663551402 0.654205607 0.644859813 0.635514019 0.626168224
[121] 0.616822430 0.607476636 0.598130841 0.588785047 0.579439252 0.570093458
[127] 0.560747664 0.560747664 0.551401869 0.542056075 0.532710280 0.523364486
[133] 0.523364486 0.514018692 0.504672897 0.495327103 0.485981308 0.485981308
[139] 0.485981308 0.476635514 0.467289720 0.457943925 0.448598131 0.439252336
[145] 0.439252336 0.439252336 0.429906542 0.420560748 0.411214953 0.411214953
[151] 0.401869159 0.392523364 0.392523364 0.383177570 0.373831776 0.364485981
[157] 0.364485981 0.355140187 0.345794393 0.336448598 0.327102804 0.317757009
[163] 0.308411215 0.299065421 0.289719626 0.280373832 0.271028037 0.261682243
[169] 0.252336449 0.252336449 0.242990654 0.233644860 0.224299065 0.214953271
[175] 0.205607477 0.196261682 0.196261682 0.186915888 0.177570093 0.168224299
[181] 0.158878505 0.149532710 0.140186916 0.130841121 0.121495327 0.112149533
[187] 0.102803738 0.093457944 0.084112150 0.074766355 0.065420561 0.056074766
[193] 0.046728972 0.037383178 0.028037383 0.018691589 0.009345794 0.009345794
[199] 0.009345794 0.000000000 0.000000000
Slot "y.values":
[[1]]
[1] 0.00000000 0.01075269 0.02150538 0.03225806 0.03225806 0.04301075
[7] 0.04301075 0.04301075 0.05376344 0.06451613 0.07526882 0.08602151
[13] 0.09677419 0.10752688 0.10752688 0.11827957 0.12903226 0.13978495
[19] 0.15053763 0.16129032 0.17204301 0.18279570 0.18279570 0.19354839
[25] 0.20430108 0.21505376 0.22580645 0.23655914 0.24731183 0.25806452
[31] 0.26881720 0.27956989 0.29032258 0.30107527 0.31182796 0.32258065
[37] 0.32258065 0.33333333 0.34408602 0.35483871 0.35483871 0.36559140
[43] 0.37634409 0.38709677 0.39784946 0.40860215 0.41935484 0.43010753
[49] 0.44086022 0.45161290 0.46236559 0.47311828 0.48387097 0.48387097
[55] 0.48387097 0.49462366 0.50537634 0.51612903 0.52688172 0.53763441
[61] 0.53763441 0.54838710 0.54838710 0.55913978 0.56989247 0.58064516
[67] 0.59139785 0.60215054 0.60215054 0.61290323 0.62365591 0.63440860
[73] 0.64516129 0.65591398 0.66666667 0.66666667 0.67741935 0.68817204
[79] 0.69892473 0.70967742 0.70967742 0.72043011 0.73118280 0.74193548
[85] 0.75268817 0.75268817 0.76344086 0.77419355 0.78494624 0.79569892
[91] 0.80645161 0.81720430 0.82795699 0.82795699 0.83870968 0.84946237
[97] 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237
[103] 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237
[109] 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237
[115] 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237
[121] 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237
[127] 0.84946237 0.86021505 0.86021505 0.86021505 0.86021505 0.86021505
[133] 0.87096774 0.87096774 0.87096774 0.87096774 0.87096774 0.88172043
[139] 0.89247312 0.89247312 0.89247312 0.89247312 0.89247312 0.89247312
[145] 0.90322581 0.91397849 0.91397849 0.91397849 0.91397849 0.92473118
[151] 0.92473118 0.92473118 0.93548387 0.93548387 0.93548387 0.93548387
[157] 0.94623656 0.94623656 0.94623656 0.94623656 0.94623656 0.94623656
[163] 0.94623656 0.94623656 0.94623656 0.94623656 0.94623656 0.94623656
[169] 0.94623656 0.95698925 0.95698925 0.95698925 0.95698925 0.95698925
[175] 0.95698925 0.95698925 0.96774194 0.96774194 0.96774194 0.96774194
[181] 0.96774194 0.96774194 0.96774194 0.96774194 0.96774194 0.96774194
[187] 0.96774194 0.96774194 0.96774194 0.96774194 0.96774194 0.96774194
[193] 0.96774194 0.96774194 0.96774194 0.96774194 0.96774194 0.97849462
[199] 0.98924731 0.98924731 1.00000000
Slot "alpha.values":
[[1]]
[1] Inf 0.991096434 0.984667270 0.984599159 0.983494405 0.970641299
[7] 0.959417835 0.945548941 0.943432189 0.938583020 0.932159806 0.930846938
[13] 0.912325837 0.911723615 0.907651100 0.905121019 0.890172812 0.890078186
[19] 0.885179651 0.883431431 0.879459891 0.876086217 0.868751832 0.868331219
[25] 0.865639036 0.858970526 0.858876675 0.844415442 0.842974300 0.835981859
[31] 0.834803976 0.814586047 0.806543942 0.790240205 0.785213140 0.781781371
[37] 0.779771989 0.773336236 0.772728821 0.770178504 0.760726142 0.757364019
[43] 0.757325590 0.748438143 0.746588080 0.745110673 0.744769966 0.739554341
[49] 0.728536415 0.717845453 0.716680598 0.715459280 0.714985914 0.708412104
[55] 0.703885141 0.703293499 0.701561487 0.700501359 0.698826511 0.697235328
[61] 0.696702150 0.694457482 0.689075677 0.665444679 0.663367560 0.658692553
[67] 0.657732644 0.642933593 0.636728451 0.628095575 0.627012496 0.623494622
[73] 0.620501132 0.612547843 0.606960209 0.605235403 0.598162949 0.589909284
[79] 0.586857799 0.579511087 0.576836208 0.567043171 0.547983407 0.543533783
[85] 0.540221346 0.539086009 0.537336015 0.537091350 0.536339509 0.531958184
[91] 0.531464015 0.531006532 0.529402244 0.522384507 0.517308606 0.501489336
[97] 0.499788081 0.496513160 0.492596896 0.491735594 0.490119891 0.488179708
[103] 0.480100183 0.470206008 0.468610247 0.463227453 0.461150807 0.458674210
[109] 0.448687336 0.448484671 0.439399995 0.432136142 0.429650397 0.423739359
[115] 0.419560072 0.408939895 0.402801992 0.393378108 0.392173971 0.385240464
[121] 0.384895941 0.383807972 0.380396459 0.378092079 0.371936985 0.370549294
[127] 0.364288579 0.364270971 0.362693564 0.360180429 0.360168796 0.353777439
[133] 0.353281048 0.349540913 0.348213542 0.340078180 0.336592126 0.336315317
[139] 0.326672910 0.319672178 0.310718619 0.300973098 0.292368449 0.288258273
[145] 0.277656869 0.268138293 0.265686095 0.259278968 0.257402979 0.253271061
[151] 0.248707470 0.248500489 0.244415489 0.240911145 0.239143340 0.233160827
[157] 0.230157183 0.212404891 0.212014560 0.211378771 0.195097957 0.194398425
[163] 0.180631658 0.172741714 0.161874325 0.151350957 0.140291078 0.138387070
[169] 0.134794140 0.133257805 0.126480399 0.123504905 0.122284044 0.120604738
[175] 0.120473353 0.118555284 0.110241034 0.107031842 0.105722115 0.101699993
[181] 0.090988280 0.088450984 0.086546283 0.085993218 0.084254795 0.083685883
[187] 0.083048377 0.081439129 0.072369921 0.060413627 0.059045866 0.050999138
[193] 0.040906997 0.035815400 0.030235062 0.018527600 0.016694412 0.014823599
[199] 0.012653524 0.007746305 0.005422562
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.