plot-methods: Plot method for performance objects

Description Usage Arguments Author(s) References See Also Examples

Description

This is the method to plot all objects of class performance.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
## S4 method for signature 'performance,missing'
plot(
  x,
  y,
  ...,
  avg = "none",
  spread.estimate = "none",
  spread.scale = 1,
  show.spread.at = c(),
  colorize = FALSE,
  colorize.palette = rev(rainbow(256, start = 0, end = 4/6)),
  colorkey = colorize,
  colorkey.relwidth = 0.25,
  colorkey.pos = "right",
  print.cutoffs.at = c(),
  cutoff.label.function = function(x) {     round(x, 2) },
  downsampling = 0,
  add = FALSE
)

## S3 method for class 'performance'
plot(...)

Arguments

x

an object of class performance

y

not used

...

Optional graphical parameters to adjust different components of the performance plot. Parameters are directed to their target component by prefixing them with the name of the component (component.parameter, e.g. text.cex). The following components are available: xaxis, yaxis, coloraxis, box (around the plotting region), points, text, plotCI (error bars), boxplot. The names of these components are influenced by the R functions that are used to create them. Thus, par(component) can be used to see which parameters are available for a given component (with the expection of the three axes; use par(axis) here). To adjust the canvas or the performance curve(s), the standard plot parameters can be used without any prefix.

avg

If the performance object describes several curves (from cross-validation runs or bootstrap evaluations of one particular method), the curves from each of the runs can be averaged. Allowed values are none (plot all curves separately), horizontal (horizontal averaging), vertical (vertical averaging), and threshold (threshold (=cutoff) averaging). Note that while threshold averaging is always feasible, vertical and horizontal averaging are not well-defined if the graph cannot be represented as a function x->y and y->x, respectively.

spread.estimate

When curve averaging is enabled, the variation around the average curve can be visualized as standard error bars (stderror), standard deviation bars (stddev), or by using box plots (boxplot). Note that the function plotCI, which is used internally by ROCR to draw error bars, might raise a warning if the spread of the curves at certain positions is 0.

spread.scale

For stderror or stddev, this is a scalar factor to be multiplied with the length of the standard error/deviation bar. For example, under normal assumptions, spread.scale=2 can be used to get approximate 95% confidence intervals.

show.spread.at

For vertical averaging, this vector determines the x positions for which the spread estimates should be visualized. In contrast, for horizontal and threshold averaging, the y positions and cutoffs are determined, respectively. By default, spread estimates are shown at 11 equally spaced positions.

colorize

This logical determines whether the curve(s) should be colorized according to cutoff.

colorize.palette

If curve colorizing is enabled, this determines the color palette onto which the cutoff range is mapped.

colorkey

If true, a color key is drawn into the 4% border region (default of par(xaxs) and par(yaxs)) of the plot. The color key visualizes the mapping from cutoffs to colors.

colorkey.relwidth

Scalar between 0 and 1 that determines the fraction of the 4% border region that is occupied by the colorkey.

colorkey.pos

Determines if the colorkey is drawn vertically at the right side, or horizontally at the top of the plot.

print.cutoffs.at

This vector specifies the cutoffs which should be printed as text along the curve at the corresponding curve positions.

cutoff.label.function

By default, cutoff annotations along the curve or at the color key are rounded to two decimal places before printing. Using a custom cutoff.label.function, any other transformation can be performed on the cutoffs instead (e.g. rounding with different precision or taking the logarithm).

downsampling

ROCR can efficiently compute most performance measures even for data sets with millions of elements. However, plotting of large data sets can be slow and lead to PS/PDF documents of considerable size. In that case, performance curves that are indistinguishable from the original can be obtained by using only a fraction of the computed performance values. Values for downsampling between 0 and 1 indicate the fraction of the original data set size to which the performance object should be downsampled, integers above 1 are interpreted as the actual number of performance values to which the curve(s) should be downsampled.

add

If TRUE, the curve(s) is/are added to an already existing plot; otherwise a new plot is drawn.

Author(s)

Tobias Sing tobias.sing@gmail.com, Oliver Sander osander@gmail.com

References

A detailed list of references can be found on the ROCR homepage at http://rocr.bioinf.mpi-sb.mpg.de.

See Also

prediction, performance, prediction-class, performance-class

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
# plotting a ROC curve:
library(ROCR)
data(ROCR.simple)
pred <- prediction( ROCR.simple$predictions, ROCR.simple$labels )
pred
perf <- performance( pred, "tpr", "fpr" )
perf
plot( perf )

# To entertain your children, make your plots nicer
# using ROCR's flexible parameter passing mechanisms
# (much cheaper than a finger painting set)
par(bg="lightblue", mai=c(1.2,1.5,1,1))
plot(perf, main="ROCR fingerpainting toolkit", colorize=TRUE,
     xlab="Mary's axis", ylab="", box.lty=7, box.lwd=5,
     box.col="gold", lwd=17, colorkey.relwidth=0.5, xaxis.cex.axis=2,
     xaxis.col='blue', xaxis.col.axis="blue", yaxis.col='green', yaxis.cex.axis=2,
     yaxis.at=c(0,0.5,0.8,0.85,0.9,1), yaxis.las=1, xaxis.lwd=2, yaxis.lwd=3,
     yaxis.col.axis="orange", cex.lab=2, cex.main=2)

Example output

Loading required package: gplots

Attaching package: 'gplots'

The following object is masked from 'package:stats':

    lowess

An object of class "prediction"
Slot "predictions":
[[1]]
  [1] 0.612547843 0.364270971 0.432136142 0.140291078 0.384895941 0.244415489
  [7] 0.970641299 0.890172812 0.781781371 0.868751832 0.716680598 0.360168796
 [13] 0.547983407 0.385240464 0.423739359 0.101699993 0.628095575 0.744769966
 [19] 0.657732644 0.490119891 0.072369921 0.172741714 0.105722115 0.890078186
 [25] 0.945548941 0.984667270 0.360180429 0.448687336 0.014823599 0.543533783
 [31] 0.292368449 0.701561487 0.715459280 0.714985914 0.120604738 0.319672178
 [37] 0.911723615 0.757325590 0.090988280 0.529402244 0.257402979 0.589909284
 [43] 0.708412104 0.326672910 0.086546283 0.879459891 0.362693564 0.230157183
 [49] 0.779771989 0.876086217 0.353281048 0.212014560 0.703293499 0.689075677
 [55] 0.627012496 0.240911145 0.402801992 0.134794140 0.120473353 0.665444679
 [61] 0.536339509 0.623494622 0.885179651 0.353777439 0.408939895 0.265686095
 [67] 0.932159806 0.248500489 0.858876675 0.491735594 0.151350957 0.694457482
 [73] 0.496513160 0.123504905 0.499788081 0.310718619 0.907651100 0.340078180
 [79] 0.195097957 0.371936985 0.517308606 0.419560072 0.865639036 0.018527600
 [85] 0.539086009 0.005422562 0.772728821 0.703885141 0.348213542 0.277656869
 [91] 0.458674210 0.059045866 0.133257805 0.083685883 0.531958184 0.429650397
 [97] 0.717845453 0.537091350 0.212404891 0.930846938 0.083048377 0.468610247
[103] 0.393378108 0.663367560 0.349540913 0.194398425 0.844415442 0.959417835
[109] 0.211378771 0.943432189 0.598162949 0.834803976 0.576836208 0.380396459
[115] 0.161874325 0.912325837 0.642933593 0.392173971 0.122284044 0.586857799
[121] 0.180631658 0.085993218 0.700501359 0.060413627 0.531464015 0.084254795
[127] 0.448484671 0.938583020 0.531006532 0.785213140 0.905121019 0.748438143
[133] 0.605235403 0.842974300 0.835981859 0.364288579 0.492596896 0.488179708
[139] 0.259278968 0.991096434 0.757364019 0.288258273 0.773336236 0.040906997
[145] 0.110241034 0.760726142 0.984599159 0.253271061 0.697235328 0.620501132
[151] 0.814586047 0.300973098 0.378092079 0.016694412 0.698826511 0.658692553
[157] 0.470206008 0.501489336 0.239143340 0.050999138 0.088450984 0.107031842
[163] 0.746588080 0.480100183 0.336592126 0.579511087 0.118555284 0.233160827
[169] 0.461150807 0.370549294 0.770178504 0.537336015 0.463227453 0.790240205
[175] 0.883431431 0.745110673 0.007746305 0.012653524 0.868331219 0.439399995
[181] 0.540221346 0.567043171 0.035815400 0.806543942 0.248707470 0.696702150
[187] 0.081439129 0.336315317 0.126480399 0.636728451 0.030235062 0.268138293
[193] 0.983494405 0.728536415 0.739554341 0.522384507 0.858970526 0.383807972
[199] 0.606960209 0.138387070


Slot "labels":
[[1]]
  [1] 1 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 1 1 1 0 0 0 0 1 0 1 0 0 1 1 0 1 1 1 0 0 1
 [38] 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 1 0 0 0 1 0 1 0 0 1 0 0
 [75] 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0 1 0 0 1 0 0 1 1
[112] 1 0 0 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 1 1 0 1 0 1 0 1 1
[149] 1 1 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 0
[186] 0 0 1 0 0 0 1 0 1 1 0 1 0 1 0
Levels: 0 < 1


Slot "cutoffs":
[[1]]
  [1]         Inf 0.991096434 0.984667270 0.984599159 0.983494405 0.970641299
  [7] 0.959417835 0.945548941 0.943432189 0.938583020 0.932159806 0.930846938
 [13] 0.912325837 0.911723615 0.907651100 0.905121019 0.890172812 0.890078186
 [19] 0.885179651 0.883431431 0.879459891 0.876086217 0.868751832 0.868331219
 [25] 0.865639036 0.858970526 0.858876675 0.844415442 0.842974300 0.835981859
 [31] 0.834803976 0.814586047 0.806543942 0.790240205 0.785213140 0.781781371
 [37] 0.779771989 0.773336236 0.772728821 0.770178504 0.760726142 0.757364019
 [43] 0.757325590 0.748438143 0.746588080 0.745110673 0.744769966 0.739554341
 [49] 0.728536415 0.717845453 0.716680598 0.715459280 0.714985914 0.708412104
 [55] 0.703885141 0.703293499 0.701561487 0.700501359 0.698826511 0.697235328
 [61] 0.696702150 0.694457482 0.689075677 0.665444679 0.663367560 0.658692553
 [67] 0.657732644 0.642933593 0.636728451 0.628095575 0.627012496 0.623494622
 [73] 0.620501132 0.612547843 0.606960209 0.605235403 0.598162949 0.589909284
 [79] 0.586857799 0.579511087 0.576836208 0.567043171 0.547983407 0.543533783
 [85] 0.540221346 0.539086009 0.537336015 0.537091350 0.536339509 0.531958184
 [91] 0.531464015 0.531006532 0.529402244 0.522384507 0.517308606 0.501489336
 [97] 0.499788081 0.496513160 0.492596896 0.491735594 0.490119891 0.488179708
[103] 0.480100183 0.470206008 0.468610247 0.463227453 0.461150807 0.458674210
[109] 0.448687336 0.448484671 0.439399995 0.432136142 0.429650397 0.423739359
[115] 0.419560072 0.408939895 0.402801992 0.393378108 0.392173971 0.385240464
[121] 0.384895941 0.383807972 0.380396459 0.378092079 0.371936985 0.370549294
[127] 0.364288579 0.364270971 0.362693564 0.360180429 0.360168796 0.353777439
[133] 0.353281048 0.349540913 0.348213542 0.340078180 0.336592126 0.336315317
[139] 0.326672910 0.319672178 0.310718619 0.300973098 0.292368449 0.288258273
[145] 0.277656869 0.268138293 0.265686095 0.259278968 0.257402979 0.253271061
[151] 0.248707470 0.248500489 0.244415489 0.240911145 0.239143340 0.233160827
[157] 0.230157183 0.212404891 0.212014560 0.211378771 0.195097957 0.194398425
[163] 0.180631658 0.172741714 0.161874325 0.151350957 0.140291078 0.138387070
[169] 0.134794140 0.133257805 0.126480399 0.123504905 0.122284044 0.120604738
[175] 0.120473353 0.118555284 0.110241034 0.107031842 0.105722115 0.101699993
[181] 0.090988280 0.088450984 0.086546283 0.085993218 0.084254795 0.083685883
[187] 0.083048377 0.081439129 0.072369921 0.060413627 0.059045866 0.050999138
[193] 0.040906997 0.035815400 0.030235062 0.018527600 0.016694412 0.014823599
[199] 0.012653524 0.007746305 0.005422562


Slot "fp":
[[1]]
  [1]   0   0   0   0   1   1   2   3   3   3   3   3   3   3   4   4   4   4
 [19]   4   4   4   4   5   5   5   5   5   5   5   5   5   5   5   5   5   5
 [37]   6   6   6   6   7   7   7   7   7   7   7   7   7   7   7   7   7   8
 [55]   9   9   9   9   9   9  10  10  11  11  11  11  11  11  12  12  12  12
 [73]  12  12  12  13  13  13  13  13  14  14  14  14  14  15  15  15  15  15
 [91]  15  15  15  16  16  16  17  18  19  20  21  22  23  24  25  26  27  28
[109]  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46
[127]  47  47  48  49  50  51  51  52  53  54  55  55  55  56  57  58  59  60
[145]  60  60  61  62  63  63  64  65  65  66  67  68  68  69  70  71  72  73
[163]  74  75  76  77  78  79  80  80  81  82  83  84  85  86  86  87  88  89
[181]  90  91  92  93  94  95  96  97  98  99 100 101 102 103 104 105 106 106
[199] 106 107 107


Slot "tp":
[[1]]
  [1]  0  1  2  3  3  4  4  4  5  6  7  8  9 10 10 11 12 13 14 15 16 17 17 18 19
 [26] 20 21 22 23 24 25 26 27 28 29 30 30 31 32 33 33 34 35 36 37 38 39 40 41 42
 [51] 43 44 45 45 45 46 47 48 49 50 50 51 51 52 53 54 55 56 56 57 58 59 60 61 62
 [76] 62 63 64 65 66 66 67 68 69 70 70 71 72 73 74 75 76 77 77 78 79 79 79 79 79
[101] 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79
[126] 79 79 80 80 80 80 80 81 81 81 81 81 82 83 83 83 83 83 83 84 85 85 85 85 86
[151] 86 86 87 87 87 87 88 88 88 88 88 88 88 88 88 88 88 88 88 89 89 89 89 89 89
[176] 89 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 91 92 92
[201] 93


Slot "tn":
[[1]]
  [1] 107 107 107 107 106 106 105 104 104 104 104 104 104 104 103 103 103 103
 [19] 103 103 103 103 102 102 102 102 102 102 102 102 102 102 102 102 102 102
 [37] 101 101 101 101 100 100 100 100 100 100 100 100 100 100 100 100 100  99
 [55]  98  98  98  98  98  98  97  97  96  96  96  96  96  96  95  95  95  95
 [73]  95  95  95  94  94  94  94  94  93  93  93  93  93  92  92  92  92  92
 [91]  92  92  92  91  91  91  90  89  88  87  86  85  84  83  82  81  80  79
[109]  78  77  76  75  74  73  72  71  70  69  68  67  66  65  64  63  62  61
[127]  60  60  59  58  57  56  56  55  54  53  52  52  52  51  50  49  48  47
[145]  47  47  46  45  44  44  43  42  42  41  40  39  39  38  37  36  35  34
[163]  33  32  31  30  29  28  27  27  26  25  24  23  22  21  21  20  19  18
[181]  17  16  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   1
[199]   1   0   0


Slot "fn":
[[1]]
  [1] 93 92 91 90 90 89 89 89 88 87 86 85 84 83 83 82 81 80 79 78 77 76 76 75 74
 [26] 73 72 71 70 69 68 67 66 65 64 63 63 62 61 60 60 59 58 57 56 55 54 53 52 51
 [51] 50 49 48 48 48 47 46 45 44 43 43 42 42 41 40 39 38 37 37 36 35 34 33 32 31
 [76] 31 30 29 28 27 27 26 25 24 23 23 22 21 20 19 18 17 16 16 15 14 14 14 14 14
[101] 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
[126] 14 14 13 13 13 13 13 12 12 12 12 12 11 10 10 10 10 10 10  9  8  8  8  8  7
[151]  7  7  6  6  6  6  5  5  5  5  5  5  5  5  5  5  5  5  5  4  4  4  4  4  4
[176]  4  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  2  1  1
[201]  0


Slot "n.pos":
[[1]]
[1] 93


Slot "n.neg":
[[1]]
[1] 107


Slot "n.pos.pred":
[[1]]
  [1]   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17
 [19]  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35
 [37]  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53
 [55]  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71
 [73]  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89
 [91]  90  91  92  93  94  95  96  97  98  99 100 101 102 103 104 105 106 107
[109] 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
[127] 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
[145] 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
[163] 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
[181] 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
[199] 198 199 200


Slot "n.neg.pred":
[[1]]
  [1] 200 199 198 197 196 195 194 193 192 191 190 189 188 187 186 185 184 183
 [19] 182 181 180 179 178 177 176 175 174 173 172 171 170 169 168 167 166 165
 [37] 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147
 [55] 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129
 [73] 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111
 [91] 110 109 108 107 106 105 104 103 102 101 100  99  98  97  96  95  94  93
[109]  92  91  90  89  88  87  86  85  84  83  82  81  80  79  78  77  76  75
[127]  74  73  72  71  70  69  68  67  66  65  64  63  62  61  60  59  58  57
[145]  56  55  54  53  52  51  50  49  48  47  46  45  44  43  42  41  40  39
[163]  38  37  36  35  34  33  32  31  30  29  28  27  26  25  24  23  22  21
[181]  20  19  18  17  16  15  14  13  12  11  10   9   8   7   6   5   4   3
[199]   2   1   0


An object of class "performance"
Slot "x.name":
[1] "False positive rate"

Slot "y.name":
[1] "True positive rate"

Slot "alpha.name":
[1] "Cutoff"

Slot "x.values":
[[1]]
  [1] 0.000000000 0.000000000 0.000000000 0.000000000 0.009345794 0.009345794
  [7] 0.018691589 0.028037383 0.028037383 0.028037383 0.028037383 0.028037383
 [13] 0.028037383 0.028037383 0.037383178 0.037383178 0.037383178 0.037383178
 [19] 0.037383178 0.037383178 0.037383178 0.037383178 0.046728972 0.046728972
 [25] 0.046728972 0.046728972 0.046728972 0.046728972 0.046728972 0.046728972
 [31] 0.046728972 0.046728972 0.046728972 0.046728972 0.046728972 0.046728972
 [37] 0.056074766 0.056074766 0.056074766 0.056074766 0.065420561 0.065420561
 [43] 0.065420561 0.065420561 0.065420561 0.065420561 0.065420561 0.065420561
 [49] 0.065420561 0.065420561 0.065420561 0.065420561 0.065420561 0.074766355
 [55] 0.084112150 0.084112150 0.084112150 0.084112150 0.084112150 0.084112150
 [61] 0.093457944 0.093457944 0.102803738 0.102803738 0.102803738 0.102803738
 [67] 0.102803738 0.102803738 0.112149533 0.112149533 0.112149533 0.112149533
 [73] 0.112149533 0.112149533 0.112149533 0.121495327 0.121495327 0.121495327
 [79] 0.121495327 0.121495327 0.130841121 0.130841121 0.130841121 0.130841121
 [85] 0.130841121 0.140186916 0.140186916 0.140186916 0.140186916 0.140186916
 [91] 0.140186916 0.140186916 0.140186916 0.149532710 0.149532710 0.149532710
 [97] 0.158878505 0.168224299 0.177570093 0.186915888 0.196261682 0.205607477
[103] 0.214953271 0.224299065 0.233644860 0.242990654 0.252336449 0.261682243
[109] 0.271028037 0.280373832 0.289719626 0.299065421 0.308411215 0.317757009
[115] 0.327102804 0.336448598 0.345794393 0.355140187 0.364485981 0.373831776
[121] 0.383177570 0.392523364 0.401869159 0.411214953 0.420560748 0.429906542
[127] 0.439252336 0.439252336 0.448598131 0.457943925 0.467289720 0.476635514
[133] 0.476635514 0.485981308 0.495327103 0.504672897 0.514018692 0.514018692
[139] 0.514018692 0.523364486 0.532710280 0.542056075 0.551401869 0.560747664
[145] 0.560747664 0.560747664 0.570093458 0.579439252 0.588785047 0.588785047
[151] 0.598130841 0.607476636 0.607476636 0.616822430 0.626168224 0.635514019
[157] 0.635514019 0.644859813 0.654205607 0.663551402 0.672897196 0.682242991
[163] 0.691588785 0.700934579 0.710280374 0.719626168 0.728971963 0.738317757
[169] 0.747663551 0.747663551 0.757009346 0.766355140 0.775700935 0.785046729
[175] 0.794392523 0.803738318 0.803738318 0.813084112 0.822429907 0.831775701
[181] 0.841121495 0.850467290 0.859813084 0.869158879 0.878504673 0.887850467
[187] 0.897196262 0.906542056 0.915887850 0.925233645 0.934579439 0.943925234
[193] 0.953271028 0.962616822 0.971962617 0.981308411 0.990654206 0.990654206
[199] 0.990654206 1.000000000 1.000000000


Slot "y.values":
[[1]]
  [1] 0.00000000 0.01075269 0.02150538 0.03225806 0.03225806 0.04301075
  [7] 0.04301075 0.04301075 0.05376344 0.06451613 0.07526882 0.08602151
 [13] 0.09677419 0.10752688 0.10752688 0.11827957 0.12903226 0.13978495
 [19] 0.15053763 0.16129032 0.17204301 0.18279570 0.18279570 0.19354839
 [25] 0.20430108 0.21505376 0.22580645 0.23655914 0.24731183 0.25806452
 [31] 0.26881720 0.27956989 0.29032258 0.30107527 0.31182796 0.32258065
 [37] 0.32258065 0.33333333 0.34408602 0.35483871 0.35483871 0.36559140
 [43] 0.37634409 0.38709677 0.39784946 0.40860215 0.41935484 0.43010753
 [49] 0.44086022 0.45161290 0.46236559 0.47311828 0.48387097 0.48387097
 [55] 0.48387097 0.49462366 0.50537634 0.51612903 0.52688172 0.53763441
 [61] 0.53763441 0.54838710 0.54838710 0.55913978 0.56989247 0.58064516
 [67] 0.59139785 0.60215054 0.60215054 0.61290323 0.62365591 0.63440860
 [73] 0.64516129 0.65591398 0.66666667 0.66666667 0.67741935 0.68817204
 [79] 0.69892473 0.70967742 0.70967742 0.72043011 0.73118280 0.74193548
 [85] 0.75268817 0.75268817 0.76344086 0.77419355 0.78494624 0.79569892
 [91] 0.80645161 0.81720430 0.82795699 0.82795699 0.83870968 0.84946237
 [97] 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237
[103] 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237
[109] 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237
[115] 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237
[121] 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237
[127] 0.84946237 0.86021505 0.86021505 0.86021505 0.86021505 0.86021505
[133] 0.87096774 0.87096774 0.87096774 0.87096774 0.87096774 0.88172043
[139] 0.89247312 0.89247312 0.89247312 0.89247312 0.89247312 0.89247312
[145] 0.90322581 0.91397849 0.91397849 0.91397849 0.91397849 0.92473118
[151] 0.92473118 0.92473118 0.93548387 0.93548387 0.93548387 0.93548387
[157] 0.94623656 0.94623656 0.94623656 0.94623656 0.94623656 0.94623656
[163] 0.94623656 0.94623656 0.94623656 0.94623656 0.94623656 0.94623656
[169] 0.94623656 0.95698925 0.95698925 0.95698925 0.95698925 0.95698925
[175] 0.95698925 0.95698925 0.96774194 0.96774194 0.96774194 0.96774194
[181] 0.96774194 0.96774194 0.96774194 0.96774194 0.96774194 0.96774194
[187] 0.96774194 0.96774194 0.96774194 0.96774194 0.96774194 0.96774194
[193] 0.96774194 0.96774194 0.96774194 0.96774194 0.96774194 0.97849462
[199] 0.98924731 0.98924731 1.00000000


Slot "alpha.values":
[[1]]
  [1]         Inf 0.991096434 0.984667270 0.984599159 0.983494405 0.970641299
  [7] 0.959417835 0.945548941 0.943432189 0.938583020 0.932159806 0.930846938
 [13] 0.912325837 0.911723615 0.907651100 0.905121019 0.890172812 0.890078186
 [19] 0.885179651 0.883431431 0.879459891 0.876086217 0.868751832 0.868331219
 [25] 0.865639036 0.858970526 0.858876675 0.844415442 0.842974300 0.835981859
 [31] 0.834803976 0.814586047 0.806543942 0.790240205 0.785213140 0.781781371
 [37] 0.779771989 0.773336236 0.772728821 0.770178504 0.760726142 0.757364019
 [43] 0.757325590 0.748438143 0.746588080 0.745110673 0.744769966 0.739554341
 [49] 0.728536415 0.717845453 0.716680598 0.715459280 0.714985914 0.708412104
 [55] 0.703885141 0.703293499 0.701561487 0.700501359 0.698826511 0.697235328
 [61] 0.696702150 0.694457482 0.689075677 0.665444679 0.663367560 0.658692553
 [67] 0.657732644 0.642933593 0.636728451 0.628095575 0.627012496 0.623494622
 [73] 0.620501132 0.612547843 0.606960209 0.605235403 0.598162949 0.589909284
 [79] 0.586857799 0.579511087 0.576836208 0.567043171 0.547983407 0.543533783
 [85] 0.540221346 0.539086009 0.537336015 0.537091350 0.536339509 0.531958184
 [91] 0.531464015 0.531006532 0.529402244 0.522384507 0.517308606 0.501489336
 [97] 0.499788081 0.496513160 0.492596896 0.491735594 0.490119891 0.488179708
[103] 0.480100183 0.470206008 0.468610247 0.463227453 0.461150807 0.458674210
[109] 0.448687336 0.448484671 0.439399995 0.432136142 0.429650397 0.423739359
[115] 0.419560072 0.408939895 0.402801992 0.393378108 0.392173971 0.385240464
[121] 0.384895941 0.383807972 0.380396459 0.378092079 0.371936985 0.370549294
[127] 0.364288579 0.364270971 0.362693564 0.360180429 0.360168796 0.353777439
[133] 0.353281048 0.349540913 0.348213542 0.340078180 0.336592126 0.336315317
[139] 0.326672910 0.319672178 0.310718619 0.300973098 0.292368449 0.288258273
[145] 0.277656869 0.268138293 0.265686095 0.259278968 0.257402979 0.253271061
[151] 0.248707470 0.248500489 0.244415489 0.240911145 0.239143340 0.233160827
[157] 0.230157183 0.212404891 0.212014560 0.211378771 0.195097957 0.194398425
[163] 0.180631658 0.172741714 0.161874325 0.151350957 0.140291078 0.138387070
[169] 0.134794140 0.133257805 0.126480399 0.123504905 0.122284044 0.120604738
[175] 0.120473353 0.118555284 0.110241034 0.107031842 0.105722115 0.101699993
[181] 0.090988280 0.088450984 0.086546283 0.085993218 0.084254795 0.083685883
[187] 0.083048377 0.081439129 0.072369921 0.060413627 0.059045866 0.050999138
[193] 0.040906997 0.035815400 0.030235062 0.018527600 0.016694412 0.014823599
[199] 0.012653524 0.007746305 0.005422562

ROCR documentation built on May 2, 2020, 5:05 p.m.