Description Usage Arguments Author(s) References See Also Examples
This is the method to plot all objects of class performance.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ## S4 method for signature 'performance,missing'
plot(
x,
y,
...,
avg = "none",
spread.estimate = "none",
spread.scale = 1,
show.spread.at = c(),
colorize = FALSE,
colorize.palette = rev(rainbow(256, start = 0, end = 4/6)),
colorkey = colorize,
colorkey.relwidth = 0.25,
colorkey.pos = "right",
print.cutoffs.at = c(),
cutoff.label.function = function(x) { round(x, 2) },
downsampling = 0,
add = FALSE
)
## S3 method for class 'performance'
plot(...)
|
x |
an object of class |
y |
not used |
... |
Optional graphical parameters to adjust different components of
the performance plot. Parameters are directed to their target component by
prefixing them with the name of the component ( |
avg |
If the performance object describes several curves (from
cross-validation runs or bootstrap evaluations of one particular method),
the curves from each of the runs can be averaged. Allowed values are
|
spread.estimate |
When curve averaging is enabled, the variation around
the average curve can be visualized as standard error bars
( |
spread.scale |
For |
show.spread.at |
For vertical averaging, this vector determines the x positions for which the spread estimates should be visualized. In contrast, for horizontal and threshold averaging, the y positions and cutoffs are determined, respectively. By default, spread estimates are shown at 11 equally spaced positions. |
colorize |
This logical determines whether the curve(s) should be colorized according to cutoff. |
colorize.palette |
If curve colorizing is enabled, this determines the color palette onto which the cutoff range is mapped. |
colorkey |
If true, a color key is drawn into the 4% border
region (default of |
colorkey.relwidth |
Scalar between 0 and 1 that determines the fraction of the 4% border region that is occupied by the colorkey. |
colorkey.pos |
Determines if the colorkey is drawn vertically at
the |
print.cutoffs.at |
This vector specifies the cutoffs which should be printed as text along the curve at the corresponding curve positions. |
cutoff.label.function |
By default, cutoff annotations along the curve
or at the color key are rounded to two decimal places before printing.
Using a custom |
downsampling |
ROCR can efficiently compute most performance measures even for data sets with millions of elements. However, plotting of large data sets can be slow and lead to PS/PDF documents of considerable size. In that case, performance curves that are indistinguishable from the original can be obtained by using only a fraction of the computed performance values. Values for downsampling between 0 and 1 indicate the fraction of the original data set size to which the performance object should be downsampled, integers above 1 are interpreted as the actual number of performance values to which the curve(s) should be downsampled. |
add |
If |
Tobias Sing tobias.sing@gmail.com, Oliver Sander osander@gmail.com
A detailed list of references can be found on the ROCR homepage at http://rocr.bioinf.mpi-sb.mpg.de.
prediction
,
performance
,
prediction-class
,
performance-class
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | # plotting a ROC curve:
library(ROCR)
data(ROCR.simple)
pred <- prediction( ROCR.simple$predictions, ROCR.simple$labels )
pred
perf <- performance( pred, "tpr", "fpr" )
perf
plot( perf )
# To entertain your children, make your plots nicer
# using ROCR's flexible parameter passing mechanisms
# (much cheaper than a finger painting set)
par(bg="lightblue", mai=c(1.2,1.5,1,1))
plot(perf, main="ROCR fingerpainting toolkit", colorize=TRUE,
xlab="Mary's axis", ylab="", box.lty=7, box.lwd=5,
box.col="gold", lwd=17, colorkey.relwidth=0.5, xaxis.cex.axis=2,
xaxis.col='blue', xaxis.col.axis="blue", yaxis.col='green', yaxis.cex.axis=2,
yaxis.at=c(0,0.5,0.8,0.85,0.9,1), yaxis.las=1, xaxis.lwd=2, yaxis.lwd=3,
yaxis.col.axis="orange", cex.lab=2, cex.main=2)
|
Loading required package: gplots
Attaching package: 'gplots'
The following object is masked from 'package:stats':
lowess
An object of class "prediction"
Slot "predictions":
[[1]]
[1] 0.612547843 0.364270971 0.432136142 0.140291078 0.384895941 0.244415489
[7] 0.970641299 0.890172812 0.781781371 0.868751832 0.716680598 0.360168796
[13] 0.547983407 0.385240464 0.423739359 0.101699993 0.628095575 0.744769966
[19] 0.657732644 0.490119891 0.072369921 0.172741714 0.105722115 0.890078186
[25] 0.945548941 0.984667270 0.360180429 0.448687336 0.014823599 0.543533783
[31] 0.292368449 0.701561487 0.715459280 0.714985914 0.120604738 0.319672178
[37] 0.911723615 0.757325590 0.090988280 0.529402244 0.257402979 0.589909284
[43] 0.708412104 0.326672910 0.086546283 0.879459891 0.362693564 0.230157183
[49] 0.779771989 0.876086217 0.353281048 0.212014560 0.703293499 0.689075677
[55] 0.627012496 0.240911145 0.402801992 0.134794140 0.120473353 0.665444679
[61] 0.536339509 0.623494622 0.885179651 0.353777439 0.408939895 0.265686095
[67] 0.932159806 0.248500489 0.858876675 0.491735594 0.151350957 0.694457482
[73] 0.496513160 0.123504905 0.499788081 0.310718619 0.907651100 0.340078180
[79] 0.195097957 0.371936985 0.517308606 0.419560072 0.865639036 0.018527600
[85] 0.539086009 0.005422562 0.772728821 0.703885141 0.348213542 0.277656869
[91] 0.458674210 0.059045866 0.133257805 0.083685883 0.531958184 0.429650397
[97] 0.717845453 0.537091350 0.212404891 0.930846938 0.083048377 0.468610247
[103] 0.393378108 0.663367560 0.349540913 0.194398425 0.844415442 0.959417835
[109] 0.211378771 0.943432189 0.598162949 0.834803976 0.576836208 0.380396459
[115] 0.161874325 0.912325837 0.642933593 0.392173971 0.122284044 0.586857799
[121] 0.180631658 0.085993218 0.700501359 0.060413627 0.531464015 0.084254795
[127] 0.448484671 0.938583020 0.531006532 0.785213140 0.905121019 0.748438143
[133] 0.605235403 0.842974300 0.835981859 0.364288579 0.492596896 0.488179708
[139] 0.259278968 0.991096434 0.757364019 0.288258273 0.773336236 0.040906997
[145] 0.110241034 0.760726142 0.984599159 0.253271061 0.697235328 0.620501132
[151] 0.814586047 0.300973098 0.378092079 0.016694412 0.698826511 0.658692553
[157] 0.470206008 0.501489336 0.239143340 0.050999138 0.088450984 0.107031842
[163] 0.746588080 0.480100183 0.336592126 0.579511087 0.118555284 0.233160827
[169] 0.461150807 0.370549294 0.770178504 0.537336015 0.463227453 0.790240205
[175] 0.883431431 0.745110673 0.007746305 0.012653524 0.868331219 0.439399995
[181] 0.540221346 0.567043171 0.035815400 0.806543942 0.248707470 0.696702150
[187] 0.081439129 0.336315317 0.126480399 0.636728451 0.030235062 0.268138293
[193] 0.983494405 0.728536415 0.739554341 0.522384507 0.858970526 0.383807972
[199] 0.606960209 0.138387070
Slot "labels":
[[1]]
[1] 1 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 1 1 1 0 0 0 0 1 0 1 0 0 1 1 0 1 1 1 0 0 1
[38] 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 1 0 0 0 1 0 1 0 0 1 0 0
[75] 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0 1 0 0 1 0 0 1 1
[112] 1 0 0 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 1 1 0 1 0 1 0 1 1
[149] 1 1 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 0
[186] 0 0 1 0 0 0 1 0 1 1 0 1 0 1 0
Levels: 0 < 1
Slot "cutoffs":
[[1]]
[1] Inf 0.991096434 0.984667270 0.984599159 0.983494405 0.970641299
[7] 0.959417835 0.945548941 0.943432189 0.938583020 0.932159806 0.930846938
[13] 0.912325837 0.911723615 0.907651100 0.905121019 0.890172812 0.890078186
[19] 0.885179651 0.883431431 0.879459891 0.876086217 0.868751832 0.868331219
[25] 0.865639036 0.858970526 0.858876675 0.844415442 0.842974300 0.835981859
[31] 0.834803976 0.814586047 0.806543942 0.790240205 0.785213140 0.781781371
[37] 0.779771989 0.773336236 0.772728821 0.770178504 0.760726142 0.757364019
[43] 0.757325590 0.748438143 0.746588080 0.745110673 0.744769966 0.739554341
[49] 0.728536415 0.717845453 0.716680598 0.715459280 0.714985914 0.708412104
[55] 0.703885141 0.703293499 0.701561487 0.700501359 0.698826511 0.697235328
[61] 0.696702150 0.694457482 0.689075677 0.665444679 0.663367560 0.658692553
[67] 0.657732644 0.642933593 0.636728451 0.628095575 0.627012496 0.623494622
[73] 0.620501132 0.612547843 0.606960209 0.605235403 0.598162949 0.589909284
[79] 0.586857799 0.579511087 0.576836208 0.567043171 0.547983407 0.543533783
[85] 0.540221346 0.539086009 0.537336015 0.537091350 0.536339509 0.531958184
[91] 0.531464015 0.531006532 0.529402244 0.522384507 0.517308606 0.501489336
[97] 0.499788081 0.496513160 0.492596896 0.491735594 0.490119891 0.488179708
[103] 0.480100183 0.470206008 0.468610247 0.463227453 0.461150807 0.458674210
[109] 0.448687336 0.448484671 0.439399995 0.432136142 0.429650397 0.423739359
[115] 0.419560072 0.408939895 0.402801992 0.393378108 0.392173971 0.385240464
[121] 0.384895941 0.383807972 0.380396459 0.378092079 0.371936985 0.370549294
[127] 0.364288579 0.364270971 0.362693564 0.360180429 0.360168796 0.353777439
[133] 0.353281048 0.349540913 0.348213542 0.340078180 0.336592126 0.336315317
[139] 0.326672910 0.319672178 0.310718619 0.300973098 0.292368449 0.288258273
[145] 0.277656869 0.268138293 0.265686095 0.259278968 0.257402979 0.253271061
[151] 0.248707470 0.248500489 0.244415489 0.240911145 0.239143340 0.233160827
[157] 0.230157183 0.212404891 0.212014560 0.211378771 0.195097957 0.194398425
[163] 0.180631658 0.172741714 0.161874325 0.151350957 0.140291078 0.138387070
[169] 0.134794140 0.133257805 0.126480399 0.123504905 0.122284044 0.120604738
[175] 0.120473353 0.118555284 0.110241034 0.107031842 0.105722115 0.101699993
[181] 0.090988280 0.088450984 0.086546283 0.085993218 0.084254795 0.083685883
[187] 0.083048377 0.081439129 0.072369921 0.060413627 0.059045866 0.050999138
[193] 0.040906997 0.035815400 0.030235062 0.018527600 0.016694412 0.014823599
[199] 0.012653524 0.007746305 0.005422562
Slot "fp":
[[1]]
[1] 0 0 0 0 1 1 2 3 3 3 3 3 3 3 4 4 4 4
[19] 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5
[37] 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 8
[55] 9 9 9 9 9 9 10 10 11 11 11 11 11 11 12 12 12 12
[73] 12 12 12 13 13 13 13 13 14 14 14 14 14 15 15 15 15 15
[91] 15 15 15 16 16 16 17 18 19 20 21 22 23 24 25 26 27 28
[109] 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
[127] 47 47 48 49 50 51 51 52 53 54 55 55 55 56 57 58 59 60
[145] 60 60 61 62 63 63 64 65 65 66 67 68 68 69 70 71 72 73
[163] 74 75 76 77 78 79 80 80 81 82 83 84 85 86 86 87 88 89
[181] 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 106
[199] 106 107 107
Slot "tp":
[[1]]
[1] 0 1 2 3 3 4 4 4 5 6 7 8 9 10 10 11 12 13 14 15 16 17 17 18 19
[26] 20 21 22 23 24 25 26 27 28 29 30 30 31 32 33 33 34 35 36 37 38 39 40 41 42
[51] 43 44 45 45 45 46 47 48 49 50 50 51 51 52 53 54 55 56 56 57 58 59 60 61 62
[76] 62 63 64 65 66 66 67 68 69 70 70 71 72 73 74 75 76 77 77 78 79 79 79 79 79
[101] 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79
[126] 79 79 80 80 80 80 80 81 81 81 81 81 82 83 83 83 83 83 83 84 85 85 85 85 86
[151] 86 86 87 87 87 87 88 88 88 88 88 88 88 88 88 88 88 88 88 89 89 89 89 89 89
[176] 89 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 91 92 92
[201] 93
Slot "tn":
[[1]]
[1] 107 107 107 107 106 106 105 104 104 104 104 104 104 104 103 103 103 103
[19] 103 103 103 103 102 102 102 102 102 102 102 102 102 102 102 102 102 102
[37] 101 101 101 101 100 100 100 100 100 100 100 100 100 100 100 100 100 99
[55] 98 98 98 98 98 98 97 97 96 96 96 96 96 96 95 95 95 95
[73] 95 95 95 94 94 94 94 94 93 93 93 93 93 92 92 92 92 92
[91] 92 92 92 91 91 91 90 89 88 87 86 85 84 83 82 81 80 79
[109] 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61
[127] 60 60 59 58 57 56 56 55 54 53 52 52 52 51 50 49 48 47
[145] 47 47 46 45 44 44 43 42 42 41 40 39 39 38 37 36 35 34
[163] 33 32 31 30 29 28 27 27 26 25 24 23 22 21 21 20 19 18
[181] 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 1
[199] 1 0 0
Slot "fn":
[[1]]
[1] 93 92 91 90 90 89 89 89 88 87 86 85 84 83 83 82 81 80 79 78 77 76 76 75 74
[26] 73 72 71 70 69 68 67 66 65 64 63 63 62 61 60 60 59 58 57 56 55 54 53 52 51
[51] 50 49 48 48 48 47 46 45 44 43 43 42 42 41 40 39 38 37 37 36 35 34 33 32 31
[76] 31 30 29 28 27 27 26 25 24 23 23 22 21 20 19 18 17 16 16 15 14 14 14 14 14
[101] 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
[126] 14 14 13 13 13 13 13 12 12 12 12 12 11 10 10 10 10 10 10 9 8 8 8 8 7
[151] 7 7 6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4
[176] 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 1 1
[201] 0
Slot "n.pos":
[[1]]
[1] 93
Slot "n.neg":
[[1]]
[1] 107
Slot "n.pos.pred":
[[1]]
[1] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
[19] 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
[37] 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
[55] 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
[73] 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
[91] 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
[109] 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
[127] 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
[145] 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
[163] 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
[181] 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
[199] 198 199 200
Slot "n.neg.pred":
[[1]]
[1] 200 199 198 197 196 195 194 193 192 191 190 189 188 187 186 185 184 183
[19] 182 181 180 179 178 177 176 175 174 173 172 171 170 169 168 167 166 165
[37] 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147
[55] 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129
[73] 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111
[91] 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93
[109] 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75
[127] 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57
[145] 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39
[163] 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21
[181] 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3
[199] 2 1 0
An object of class "performance"
Slot "x.name":
[1] "False positive rate"
Slot "y.name":
[1] "True positive rate"
Slot "alpha.name":
[1] "Cutoff"
Slot "x.values":
[[1]]
[1] 0.000000000 0.000000000 0.000000000 0.000000000 0.009345794 0.009345794
[7] 0.018691589 0.028037383 0.028037383 0.028037383 0.028037383 0.028037383
[13] 0.028037383 0.028037383 0.037383178 0.037383178 0.037383178 0.037383178
[19] 0.037383178 0.037383178 0.037383178 0.037383178 0.046728972 0.046728972
[25] 0.046728972 0.046728972 0.046728972 0.046728972 0.046728972 0.046728972
[31] 0.046728972 0.046728972 0.046728972 0.046728972 0.046728972 0.046728972
[37] 0.056074766 0.056074766 0.056074766 0.056074766 0.065420561 0.065420561
[43] 0.065420561 0.065420561 0.065420561 0.065420561 0.065420561 0.065420561
[49] 0.065420561 0.065420561 0.065420561 0.065420561 0.065420561 0.074766355
[55] 0.084112150 0.084112150 0.084112150 0.084112150 0.084112150 0.084112150
[61] 0.093457944 0.093457944 0.102803738 0.102803738 0.102803738 0.102803738
[67] 0.102803738 0.102803738 0.112149533 0.112149533 0.112149533 0.112149533
[73] 0.112149533 0.112149533 0.112149533 0.121495327 0.121495327 0.121495327
[79] 0.121495327 0.121495327 0.130841121 0.130841121 0.130841121 0.130841121
[85] 0.130841121 0.140186916 0.140186916 0.140186916 0.140186916 0.140186916
[91] 0.140186916 0.140186916 0.140186916 0.149532710 0.149532710 0.149532710
[97] 0.158878505 0.168224299 0.177570093 0.186915888 0.196261682 0.205607477
[103] 0.214953271 0.224299065 0.233644860 0.242990654 0.252336449 0.261682243
[109] 0.271028037 0.280373832 0.289719626 0.299065421 0.308411215 0.317757009
[115] 0.327102804 0.336448598 0.345794393 0.355140187 0.364485981 0.373831776
[121] 0.383177570 0.392523364 0.401869159 0.411214953 0.420560748 0.429906542
[127] 0.439252336 0.439252336 0.448598131 0.457943925 0.467289720 0.476635514
[133] 0.476635514 0.485981308 0.495327103 0.504672897 0.514018692 0.514018692
[139] 0.514018692 0.523364486 0.532710280 0.542056075 0.551401869 0.560747664
[145] 0.560747664 0.560747664 0.570093458 0.579439252 0.588785047 0.588785047
[151] 0.598130841 0.607476636 0.607476636 0.616822430 0.626168224 0.635514019
[157] 0.635514019 0.644859813 0.654205607 0.663551402 0.672897196 0.682242991
[163] 0.691588785 0.700934579 0.710280374 0.719626168 0.728971963 0.738317757
[169] 0.747663551 0.747663551 0.757009346 0.766355140 0.775700935 0.785046729
[175] 0.794392523 0.803738318 0.803738318 0.813084112 0.822429907 0.831775701
[181] 0.841121495 0.850467290 0.859813084 0.869158879 0.878504673 0.887850467
[187] 0.897196262 0.906542056 0.915887850 0.925233645 0.934579439 0.943925234
[193] 0.953271028 0.962616822 0.971962617 0.981308411 0.990654206 0.990654206
[199] 0.990654206 1.000000000 1.000000000
Slot "y.values":
[[1]]
[1] 0.00000000 0.01075269 0.02150538 0.03225806 0.03225806 0.04301075
[7] 0.04301075 0.04301075 0.05376344 0.06451613 0.07526882 0.08602151
[13] 0.09677419 0.10752688 0.10752688 0.11827957 0.12903226 0.13978495
[19] 0.15053763 0.16129032 0.17204301 0.18279570 0.18279570 0.19354839
[25] 0.20430108 0.21505376 0.22580645 0.23655914 0.24731183 0.25806452
[31] 0.26881720 0.27956989 0.29032258 0.30107527 0.31182796 0.32258065
[37] 0.32258065 0.33333333 0.34408602 0.35483871 0.35483871 0.36559140
[43] 0.37634409 0.38709677 0.39784946 0.40860215 0.41935484 0.43010753
[49] 0.44086022 0.45161290 0.46236559 0.47311828 0.48387097 0.48387097
[55] 0.48387097 0.49462366 0.50537634 0.51612903 0.52688172 0.53763441
[61] 0.53763441 0.54838710 0.54838710 0.55913978 0.56989247 0.58064516
[67] 0.59139785 0.60215054 0.60215054 0.61290323 0.62365591 0.63440860
[73] 0.64516129 0.65591398 0.66666667 0.66666667 0.67741935 0.68817204
[79] 0.69892473 0.70967742 0.70967742 0.72043011 0.73118280 0.74193548
[85] 0.75268817 0.75268817 0.76344086 0.77419355 0.78494624 0.79569892
[91] 0.80645161 0.81720430 0.82795699 0.82795699 0.83870968 0.84946237
[97] 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237
[103] 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237
[109] 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237
[115] 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237
[121] 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237 0.84946237
[127] 0.84946237 0.86021505 0.86021505 0.86021505 0.86021505 0.86021505
[133] 0.87096774 0.87096774 0.87096774 0.87096774 0.87096774 0.88172043
[139] 0.89247312 0.89247312 0.89247312 0.89247312 0.89247312 0.89247312
[145] 0.90322581 0.91397849 0.91397849 0.91397849 0.91397849 0.92473118
[151] 0.92473118 0.92473118 0.93548387 0.93548387 0.93548387 0.93548387
[157] 0.94623656 0.94623656 0.94623656 0.94623656 0.94623656 0.94623656
[163] 0.94623656 0.94623656 0.94623656 0.94623656 0.94623656 0.94623656
[169] 0.94623656 0.95698925 0.95698925 0.95698925 0.95698925 0.95698925
[175] 0.95698925 0.95698925 0.96774194 0.96774194 0.96774194 0.96774194
[181] 0.96774194 0.96774194 0.96774194 0.96774194 0.96774194 0.96774194
[187] 0.96774194 0.96774194 0.96774194 0.96774194 0.96774194 0.96774194
[193] 0.96774194 0.96774194 0.96774194 0.96774194 0.96774194 0.97849462
[199] 0.98924731 0.98924731 1.00000000
Slot "alpha.values":
[[1]]
[1] Inf 0.991096434 0.984667270 0.984599159 0.983494405 0.970641299
[7] 0.959417835 0.945548941 0.943432189 0.938583020 0.932159806 0.930846938
[13] 0.912325837 0.911723615 0.907651100 0.905121019 0.890172812 0.890078186
[19] 0.885179651 0.883431431 0.879459891 0.876086217 0.868751832 0.868331219
[25] 0.865639036 0.858970526 0.858876675 0.844415442 0.842974300 0.835981859
[31] 0.834803976 0.814586047 0.806543942 0.790240205 0.785213140 0.781781371
[37] 0.779771989 0.773336236 0.772728821 0.770178504 0.760726142 0.757364019
[43] 0.757325590 0.748438143 0.746588080 0.745110673 0.744769966 0.739554341
[49] 0.728536415 0.717845453 0.716680598 0.715459280 0.714985914 0.708412104
[55] 0.703885141 0.703293499 0.701561487 0.700501359 0.698826511 0.697235328
[61] 0.696702150 0.694457482 0.689075677 0.665444679 0.663367560 0.658692553
[67] 0.657732644 0.642933593 0.636728451 0.628095575 0.627012496 0.623494622
[73] 0.620501132 0.612547843 0.606960209 0.605235403 0.598162949 0.589909284
[79] 0.586857799 0.579511087 0.576836208 0.567043171 0.547983407 0.543533783
[85] 0.540221346 0.539086009 0.537336015 0.537091350 0.536339509 0.531958184
[91] 0.531464015 0.531006532 0.529402244 0.522384507 0.517308606 0.501489336
[97] 0.499788081 0.496513160 0.492596896 0.491735594 0.490119891 0.488179708
[103] 0.480100183 0.470206008 0.468610247 0.463227453 0.461150807 0.458674210
[109] 0.448687336 0.448484671 0.439399995 0.432136142 0.429650397 0.423739359
[115] 0.419560072 0.408939895 0.402801992 0.393378108 0.392173971 0.385240464
[121] 0.384895941 0.383807972 0.380396459 0.378092079 0.371936985 0.370549294
[127] 0.364288579 0.364270971 0.362693564 0.360180429 0.360168796 0.353777439
[133] 0.353281048 0.349540913 0.348213542 0.340078180 0.336592126 0.336315317
[139] 0.326672910 0.319672178 0.310718619 0.300973098 0.292368449 0.288258273
[145] 0.277656869 0.268138293 0.265686095 0.259278968 0.257402979 0.253271061
[151] 0.248707470 0.248500489 0.244415489 0.240911145 0.239143340 0.233160827
[157] 0.230157183 0.212404891 0.212014560 0.211378771 0.195097957 0.194398425
[163] 0.180631658 0.172741714 0.161874325 0.151350957 0.140291078 0.138387070
[169] 0.134794140 0.133257805 0.126480399 0.123504905 0.122284044 0.120604738
[175] 0.120473353 0.118555284 0.110241034 0.107031842 0.105722115 0.101699993
[181] 0.090988280 0.088450984 0.086546283 0.085993218 0.084254795 0.083685883
[187] 0.083048377 0.081439129 0.072369921 0.060413627 0.059045866 0.050999138
[193] 0.040906997 0.035815400 0.030235062 0.018527600 0.016694412 0.014823599
[199] 0.012653524 0.007746305 0.005422562
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.