Description Slots Objects from the Class Note Author(s) References See Also
Object to encapsulate numerical predictions together with the corresponding true class labels, optionally collecting predictions and labels for several cross-validation or bootstrapping runs.
predictions
A list, in which each element is a vector of predictions (the list has length > 1 for x-validation data.
labels
Analogously, a list in which each element is a vector of true class labels.
cutoffs
A list in which each element is a vector of all necessary cutoffs. Each cutoff vector consists of the predicted scores (duplicates removed), in descending order.
fp
A list in which each element is a vector of the number (not the rate!) of false positives induced by the cutoffs given in the corresponding 'cutoffs' list entry.
tp
As fp, but for true positives.
tn
As fp, but for true negatives.
fn
As fp, but for false negatives.
n.pos
A list in which each element contains the number of positive samples in the given x-validation run.
n.neg
As n.pos, but for negative samples.
n.pos.pred
A list in which each element is a vector of the number of samples predicted as positive at the cutoffs given in the corresponding 'cutoffs' entry.
n.neg.pred
As n.pos.pred, but for negatively predicted samples.
Objects can be created by using the prediction
function.
Every prediction
object contains information about the 2x2
contingency table consisting of tp,tn,fp, and fn, along with the
marginal sums n.pos,n.neg,n.pos.pred,n.neg.pred, because these form
the basis for many derived performance measures.
Tobias Sing tobias.sing@gmail.com, Oliver Sander osander@gmail.com
A detailed list of references can be found on the ROCR homepage at http://rocr.bioinf.mpi-sb.mpg.de.
prediction
,
performance
,
performance-class
,
plot.performance
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.