View source: R/Sym.PCA.Hist.PCA.k.plot.r
Sym.PCA.Hist.PCA.k.plot | R Documentation |
Sym.PCA.Hist.PCA.k.plot
Sym.PCA.Hist.PCA.k.plot(
data.sym.df,
title.graph,
concepts.name,
title.x,
title.y,
pca.axes
)
data.sym.df |
Bins's projections |
title.graph |
Plot title |
concepts.name |
Concepts names |
title.x |
Label of axis X |
title.y |
Label of axis Y |
pca.axes |
Principal Component |
Concepts projected onto the Principal component chosen
Jorge Arce Garro
## Not run:
data("hardwoodBrito")
Hardwood.histogram<-hardwoodBrito
Hardwood.cols<-colnames(Hardwood.histogram)
Hardwood.names<-row.names(Hardwood.histogram)
M<-length(Hardwood.cols)
N<-length(Hardwood.names)
BIN.Matrix<-matrix(rep(3,N*M),nrow = N)
pca.hist<-sym.histogram.pca(Hardwood.histogram,BIN.Matrix)
Hardwood.quantiles.PCA<-quantiles.RSDA(pca.hist$sym.hist.matrix.PCA,3)
ACER.p1<-Sym.PCA.Hist.PCA.k.plot(data.sym.df = pca.hist$Bins.df,
title.graph = " ",
concepts.name = c("ACER"),
title.x = "First Principal Component (84.83%)",
title.y = "Frequency",
pca.axes = 1)
ACER.p1
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.