View source: R/sym_interval_pc.R
sym.interval.pc | R Documentation |
Compute a symbolic interval principal components curves
sym.interval.pc(sym.data, method = c('vertex', 'centers'), maxit, plot, scale, center)
sym.data |
Shoud be a symbolic data table read with the function read.sym.table(...) |
method |
It should be 'vertex' or 'centers'. |
maxit |
Maximum number of iterations. |
plot |
TRUE to plot immediately, FALSE if you do not want to plot. |
scale |
TRUE to standardize the data. |
center |
TRUE to center the data. |
prin.curve: This a symbolic data table with the interval principal components. As this is a symbolic data table we can apply over this table any other symbolic data analysis method (symbolic propagation).
cor.ps: This is the interval correlations between the original interval variables and the interval principal components, it can be use to plot the symbolic circle of correlations.
Jorge Arce.
Arce J. and Rodriguez O. (2015) 'Principal Curves and Surfaces to Interval Valued Variables'. The 5th Workshop on Symbolic Data Analysis, SDA2015, Orleans, France, November.
Hastie,T. (1984). Principal Curves and Surface. Ph.D Thesis Stanford University.
Hastie,T. & Weingessel,A. (2014). princurve - Fits a Principal Curve in Arbitrary Dimension.R package version 1.1–12 http://cran.r-project.org/web/packages/princurve/index.html.
Hastie,T. & Stuetzle, W. (1989). Principal Curves. Journal of the American Statistical Association, Vol. 84-406, 502–516.
Hastie, T., Tibshirani, R. & Friedman, J. (2008). The Elements of Statistical Learning; Data Mining, Inference and Prediction. Springer, New York.
sym.interval.pca
## Not run:
data(oils)
res.vertex.ps <- sym.interval.pc(oils, "vertex", 150, FALSE, FALSE, TRUE)
class(res.vertex.ps$sym.prin.curve) <- c("sym.data.table")
sym.scatterplot(res.vertex.ps$sym.prin.curve[, 1], res.vertex.ps$sym.prin.curve[, 2],
labels = TRUE, col = "red", main = "PSC Oils Data"
)
data(facedata)
res.vertex.ps <- sym.interval.pc(facedata, "vertex", 150, FALSE, FALSE, TRUE)
class(res.vertex.ps$sym.prin.curve) <- c("sym.data.table")
sym.scatterplot(res.vertex.ps$sym.prin.curve[, 1], res.vertex.ps$sym.prin.curve[, 2],
labels = TRUE, col = "red", main = "PSC Face Data"
)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.