View source: R/sym_interval_pca.R
sym.pca | R Documentation |
Cazes, Chouakria, Diday and Schektman (1997) proposed the Centers and the Tops Methods to extend the well known principal components analysis method to a particular kind of symbolic objects characterized by multi–values variables of interval type.
sym.pca(sym.data, ...)
## S3 method for class 'symbolic_tbl'
sym.pca(
sym.data,
method = c("classic", "tops", "centers", "principal.curves", "optimized.distance",
"optimized.variance", "fixed"),
fixed.matrix = NULL,
...
)
sym.data |
Shoud be a symbolic data table |
... |
further arguments passed to or from other methods. |
method |
It is use so select the method, 'classic' execute a classical principal component analysis over the centers of the intervals, 'tops' to use the vertices algorithm and 'centers' to use the centers algorithm. |
fixed.matrix |
Classic Matrix. It is use when the method chosen is "fixed". |
Sym.Components: This a symbolic data table with the interval principal components. As this is a symbolic data table we can apply over this table any other symbolic data analysis method (symbolic propagation).
Sym.Prin.Correlations: This is the interval correlations between the original interval variables and the interval principal components, it can be use to plot the symbolic circle of correlations.
Oldemar Rodriguez Rojas
Bock H-H. and Diday E. (eds.) (2000). Analysis of Symbolic Data. Exploratory methods for extracting statistical information from complex data. Springer, Germany.
Cazes P., Chouakria A., Diday E. et Schektman Y. (1997). Extension de l'analyse en composantes principales a des donnees de type intervalle, Rev. Statistique Appliquee, Vol. XLV Num. 3 pag. 5-24, France.
Chouakria A. (1998) Extension des methodes d'analysis factorialle a des donnees de type intervalle, Ph.D. Thesis, Paris IX Dauphine University.
Makosso-Kallyth S. and Diday E. (2012). Adaptation of interval PCA to symbolic histogram variables, Advances in Data Analysis and Classification July, Volume 6, Issue 2, pp 147-159.
Rodriguez, O. (2000). Classification et Modeles Lineaires en Analyse des Donnees Symboliques. Ph.D. Thesis, Paris IX-Dauphine University.
sym.histogram.pca
## Not run:
data(oils)
res <- sym.pca(oils, "centers")
sym.scatterplot(res$Sym.Components[, 1], res$Sym.Components[, 1],
labels = TRUE, col = "red", main = "PCA Oils Data"
)
sym.scatterplot3d(res$Sym.Components[, 1], res$Sym.Components[, 2],
res$Sym.Components[, 3],
color = "blue", main = "PCA Oils Data"
)
sym.scatterplot.ggplot(res$Sym.Components[, 1], res$Sym.Components[, 2],
labels = TRUE
)
sym.circle.plot(res$Sym.Prin.Correlations)
res <- sym.pca(oils, "classic")
plot(res, choix = "ind")
plot(res, choix = "var")
data(lynne2)
res <- sym.pca(lynne2, "centers")
sym.scatterplot(res$Sym.Components[, 1], res$Sym.Components[, 2],
labels = TRUE, col = "red", main = "PCA Lynne Data"
)
sym.scatterplot3d(res$Sym.Components[, 1], res$Sym.Components[, 2],
res$Sym.Components[, 3],
color = "blue", main = "PCA Lynne Data"
)
sym.scatterplot.ggplot(res$Sym.Components[, 1], res$Sym.Components[, 2],
labels = TRUE
)
sym.circle.plot(res$Sym.Prin.Correlations)
data(StudentsGrades)
st <- StudentsGrades
s.pca <- sym.pca(st)
plot(s.pca, choix = "ind")
plot(s.pca, choix = "var")
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.