Nothing
#' @name abalone
#' @title SODAS XML data file.
#' @description Example of SODAS XML data file converted in a CSV file in RSDA format.
#' @usage data(abalone)
#' @source http://www.info.fundp.ac.be/asso/sodaslink.htm
#' @references Bock H-H. and Diday E. (eds.) (2000).Analysis of Symbolic Data. Exploratory methods
#' for extracting statistical information fromcomplex data. Springer, Germany.
#' @examples
#' data(abalone)
#' res <- sym.pca(abalone, 'centers')
#' plot(res, choix = "ind")
#' plot(res, choix = "var")
#' @keywords datasets
"abalone"
#' @name Cardiological
#' @title Cardiological data example
#' @description Cardiological interval data example.
#' @usage data(Cardiological)
#' @references Billard L. and Diday E. (2006).Symbolic data analysis:
#' Conceptual statistics and data mining. Wiley, Chichester.
#' @examples
#' data(Cardiological)
#' res.cm <- sym.lm(formula = Pulse~Syst+Diast, sym.data = Cardiological, method = 'cm')
#' pred.cm <- sym.predict(res.cm, Cardiological)
#' RMSE.L(Cardiological$Pulse, pred.cm$Fitted)
#' RMSE.U(Cardiological$Pulse,pred.cm$Fitted)
#' R2.L(Cardiological$Pulse,pred.cm$Fitted)
#' R2.U(Cardiological$Pulse,pred.cm$Fitted)
#' deter.coefficient(Cardiological$Pulse,pred.cm$Fitted)
#' @keywords datasets
"Cardiological"
#' @name cardiologicalv2
#' @title Cardiological data example
#' @description Cardiological interval data example.
#' @usage data(Cardiological)
#' @references Billard L. and Diday E. (2006).Symbolic data analysis:
#' Conceptual statistics and data mining. Wiley, Chichester.
#' @keywords datasets
"cardiologicalv2"
#' @name ex1_db2so
#' @aliases ex1_db2so
#' @title Data example to generate symbolic objets
#' @description This is a small data example to generate symbolic objets.
#' @usage data(ex1_db2so)
#' @references Bock H-H. and Diday E. (eds.) (2000).
#' Analysis of Symbolic Data. Exploratory methods for extracting statistical information from
#' complex data. Springer, Germany.
#' @examples
#' data(ex1_db2so)
#' ex1 <- ex1_db2so
#' result <- classic.to.sym(
#' x = ex1_db2so,
#' concept = c(state, sex),
#' variables = c(county, group, age),
#' county = mean(county),
#' age_hist = sym.histogram(age, breaks = pretty(ex1_db2so$age, 5))
#' )
#' result
#' @keywords datasets
"ex1_db2so"
#' @name example1
#' @aliases example1
#' @title Data Example 1
#' @description This a symbolic data table with variables of continuos, interval,
#' histogram and set types.
#' @usage data(example1)
#' @format The labels $C means that follows a continuous variable, $I means an interval
#' variable, $H means a histogram variables and $S means set variable. In the
#' first row each labels should be follow of a name to variable and to the case
#' of histogram a set variables types the names of the modalities (categories).
#' In data rows for continuous variables we have just one value, for interval
#' variables we have the minimum and the maximum of the interval, for histogram
#' variables we have the number of modalities and then the probability of each
#' modality and for set variables we have the cardinality of the set and next
#' the elements of the set. \cr
#' The format is the *.csv file is: \cr
#' $C F1 $I F2 F2 $M F3 M1 M2 M3 $S F4 e a 2 3 g b 1 4 i k c d \cr
#' Case1 $C 2.8 $I 1 2 $M 3 0.1 0.7 0.2 $S 12 1 0 0 0 1 0 0 0 1 1 0 0 \cr
#' Case2 $C 1.4 $I 3 9 $M 3 0.6 0.3 0.1 $S 12 0 1 0 0 0 1 0 0 0 0 1 1 \cr
#' Case3 $C 3.2 $I -1 4 $M 3 0.2 0.2 0.6 $S 12 0 0 1 0 0 1 1 0 0 0 1 0 \cr
#' Case4 $C -2.1 $I 0 2 $M 3 0.9 0.0 0.1 $S 12 0 1 0 1 0 0 0 1 0 0 1 0 \cr
#' Case5 $C -3.0 $I -4 -2 $M 3 0.6 0.0 0.4 $S 12 1 0 0 0 1 0 0 0 1 1 0 0 \cr
#' The internal format is:\cr
#' $N \cr
#' [1] 5 \cr
#' $M \cr
#' [1] 4 \cr
#' $sym.obj.names \cr
#' [1] 'Case1' 'Case2' 'Case3' 'Case4' 'Case5' \cr
#' $sym.var.names \cr
#' [1] 'F1' 'F2' 'F3' 'F4' \cr
#' $sym.var.types
#' [1] '$C' '$I' '$H' '$S' \cr
#' $sym.var.length \cr
#' [1] 1 2 3 4 \cr
#' $sym.var.starts \cr
#' [1] 2 4 8 13 \cr
#' $meta \cr
#'
#' $C F1 $I F2 F2 $M F3 M1 M2 M3 $S F4 e a 2 3 g b 1 4 i k c d
#' Case1 $C 2.8 $I 1 2 $M 3 0.1 0.7 0.2 $S 12 1 0 0 0 1 0 0 0 1 1 0 0
#' Case2 $C 1.4 $I 3 9 $M 3 0.6 0.3 0.1 $S 12 0 1 0 0 0 1 0 0 0 0 1 1
#' Case3 $C 3.2 $I -1 4 $M 3 0.2 0.2 0.6 $S 12 0 0 1 0 0 1 1 0 0 0 1 0
#' Case4 $C -2.1 $I 0 2 $M 3 0.9 0.0 0.1 $S 12 0 1 0 1 0 0 0 1 0 0 1 0
#' Case5 $C -3.0 $I -4 -2 $M 3 0.6 0.0 0.4 $S 12 1 0 0 0 1 0 0 0 1 1 0 0
#' $data \cr
#' F1 F2 F2.1 M1 M2 M3 e a 2 3 g b 1 4 i k c d
#' Case1 2.8 1 2 0.1 0.7 0.2 1 0 0 0 1 0 0 0 1 1 0 0
#' Case2 1.4 3 9 0.6 0.3 0.1 0 1 0 0 0 1 0 0 0 0 1 1
#' Case3 3.2 -1 4 0.2 0.2 0.6 0 0 1 0 0 1 1 0 0 0 1 0
#' Case4 -2.1 0 2 0.9 0.0 0.1 0 1 0 1 0 0 0 1 0 0 1 0
#' Case5 -3.0 -4 -2 0.6 0.0 0.4 1 0 0 0 1 0 0 0 1 1 0 0
#'
#' @references Bock H-H. and Diday E. (eds.) (2000).
#' Analysis of Symbolic Data. Exploratory methods for extracting statistical information from
#' complex data. Springer, Germany.
#' @examples
#' data(example1)
#' example1
#' @keywords datasets
"example1"
#' @name example2
#' @aliases example2
#' @title Data Example 2
#' @description This a symbolic data table with variables of continuos, interval,
#' histogram and set types.
#' @usage data(example2)
#' @format
#' $C F1 $I F2 F2 $M F3 M1 M2 M3 $C F4 $S F5 e a 2 3 g b 1 4 i k c d\cr
#' Case1 $C 2.8 $I 1 2 $M 3 0.1 0.7 0.2 $C 6.0 $S 12 1 0 0 0 1 0 0 0 1 1 0 0\cr
#' Case2 $C 1.4 $I 3 9 $M 3 0.6 0.3 0.1 $C 8.0 $S 12 0 1 0 0 0 1 0 0 0 0 1 1\cr
#' Case3 $C 3.2 $I -1 4 $M 3 0.2 0.2 0.6 $C -7.0 $S 12 0 0 1 0 0 1 1 0 0 0 1 0\cr
#' Case4 $C -2.1 $I 0 2 $M 3 0.9 0.0 0.1 $C 0.0 $S 12 0 1 0 1 0 0 0 1 0 0 1 0\cr
#' Case5 $C -3.0 $I -4 -2 $M 3 0.6 0.0 0.4 $C -9.5 $S 12 1 0 0 0 1 0 0 0 1 1 0 0\cr
#'
#' @examples
#' data(example2)
#' example2
#' @keywords datasets
"example2"
#' @name example3
#' @aliases example3
#' @title Data Example 3
#' @description This a symbolic data table with variables of continuos, interval,
#' histogram and set types.
#' @usage data(example3)
#' @format
#' $C F1 $I F2 F2 $M F3 M1 M2 M3 $C F4 $S F5 e a 2 3 g b 1 4 i k c d $I F6 F6 $I F7 F7
#' Case1 $C 2.8 $I 1 2 $M 3 0.1 0.7 0.2 $C 6.0 $S 12 1 0 0 0 1 0 0 0 1 1 0 0 $I 0.00 90.00 $I 9 24
#' Case2 $C 1.4 $I 3 9 $M 3 0.6 0.3 0.1 $C 8.0 $S 12 0 1 0 0 0 1 0 0 0 0 1 1 $I -90.00 98.00 $I -9 9
#' Case3 $C 3.2 $I -1 4 $M 3 0.2 0.2 0.6 $C -7.0 $S 12 0 0 1 0 0 1 1 0 0 0 1 0 $I 65.00 90.00 $I 65 70
#' Case4 $C -2.1 $I 0 2 $M 3 0.9 0.0 0.1 $C 0.0 $S 12 0 1 0 1 0 0 0 1 0 0 1 0 $I 45.00 89.00 $I 25 67
#' Case5 $C -3.0 $I -4 -2 $M 3 0.6 0.0 0.4 $C -9.5 $S 12 1 0 0 0 1 0 0 0 1 1 0 0 $I 20.00 40.00 $I 9 40
#' Case6 $C 0.1 $I 10 21 $M 3 0.0 0.7 0.3 $C -1.0 $S 12 1 0 0 0 0 0 1 0 1 0 0 0 $I 5.00 8.00 $I 5 8
#' Case7 $C 9.0 $I 4 21 $M 3 0.2 0.2 0.6 $C 0.5 $S 12 1 1 1 0 0 0 0 0 0 0 0 0 $I 3.14 6.76 $I 4 6
#'
#' @examples
#' data(example3)
#' example3
#' @keywords datasets
"example3"
#' @name example4
#' @aliases example4
#' @title Data Example 4
#' @description
#' data(example4)
#' example4
#' @usage data(example4)
#' @format
#' $C 2.8 $I 1 2 $M 3 0.1 0.7 0.2 $C 6 $S F4 e a 2 3 g b 1 4 i k c d $I 0 90
#' Case2 $C 1.4 $I 3 9 $M 3 0.6 0.3 0.1 $C 8.0 $S 12 1 0 0 0 1 0 0 0 1 1 0 0 $I -90.00 98.00
#' Case3 $C 3.2 $I -1 4 $M 3 0.2 0.2 0.6 $C -7.0 $S 12 0 1 0 0 0 1 0 0 0 0 1 1 $I 65.00 90.00
#' Case4 $C -2.1 $I 0 2 $M 3 0.9 0.0 0.1 $C 0.0 $S 12 0 0 1 0 0 1 1 0 0 0 1 0 $I 45.00 89.00
#' Case5 $C -3.0 $I -4 -2 $M 3 0.6 0.0 0.4 $C -9.5 $S 12 0 1 0 1 0 0 0 1 0 0 1 0 $I 90.00 990.00
#' Case6 $C 0.1 $I 10 21 $M 3 0.0 0.7 0.3 $C -1.0 $S 12 1 0 0 0 1 0 0 0 1 1 0 0 $I 5.00 8.00
#' Case7 $C 9.0 $I 4 21 $M 3 0.2 0.2 0.6 $C 0.5 $S 12 1 1 0 0 0 0 1 0 0 0 0 1 $I 3.14 6.76
#'
#' @examples
#' data(example4)
#' example4
#' @keywords datasets
"example4"
#' @name example5
#' @aliases example5
#' @title Data Example 5
#' @description
#' This a symbolic data matrix wint continuos, interval, histograma a set data types.
#' @usage data(example5)
#' @format
#' $H F0 M01 M02 $C F1 $I F2 F2 $H F3 M1 M2 M3 $S F4 E1 E2 E3 E4 \cr
#' Case1 $H 2 0.1 0.9 $C 2.8 $I 1 2 $H 3 0.1 0.7 0.2 $S 4 e g k i \cr
#' Case2 $H 2 0.7 0.3 $C 1.4 $I 3 9 $H 3 0.6 0.3 0.1 $S 4 a b c d \cr
#' Case3 $H 2 0.0 1.0 $C 3.2 $I -1 4 $H 3 0.2 0.2 0.6 $S 4 2 1 b c \cr
#' Case4 $H 2 0.2 0.8 $C -2.1 $I 0 2 $H 3 0.9 0.0 0.1 $S 4 3 4 c a \cr
#' Case5 $H 2 0.6 0.4 $C -3.0 $I -4 -2 $H 3 0.6 0.0 0.4 $S 4 e i g k \cr
#'
#' @examples
#' data(example5)
#' example5
#' @keywords datasets
"example5"
#' @name example6
#' @aliases example6
#' @title Data Example 6
#' @description
#' This a symbolic data matrix wint continuos, interval, histograma a set data types.
#' @usage data(example6)
#' @format
#'
#' $C F1 $M F2 M1 M2 M3 M4 M5 $I F3 F3 $M F4 M1 M2 M3 $C F5 $S F4 e a 2 3 g b 1 4 i k c d
#' Case1 $C 2.8 $M 5 0.1 0.1 0.1 0.1 0.6 $I 1 2 $M 3 0.1 0.7 0.2 $C 6.0 $S 12 1 0 0 0 1 0 0 0 1 1 0 0
#' Case2 $C 1.4 $M 5 0.1 0.1 0.1 0.1 0.6 $I 3 9 $M 3 0.6 0.3 0.1 $C 8.0 $S 12 0 1 0 0 0 1 0 0 0 0 1 1
#' Case3 $C 3.2 $M 5 0.1 0.1 0.1 0.1 0.6 $I -1 4 $M 3 0.2 0.2 0.6 $C -7.0 $S 12 0 0 1 0 0 1 1 0 0 0 1 0
#' Case4 $C -2.1 $M 5 0.1 0.1 0.1 0.1 0.6 $I 0 2 $M 3 0.9 0.0 0.1 $C 0.0 $S 12 0 1 0 1 0 0 0 1 0 0 1 0
#' Case5 $C -3.0 $M 5 0.1 0.1 0.1 0.1 0.6 $I -4 -2 $M 3 0.6 0.0 0.4 $C -9.5 $S 12 1 0 0 0 1 0 0 0 1 1 0 0
#'
#' @examples
#' data(example6)
#' example6
#' @keywords datasets
"example6"
#' @name example7
#' @aliases example7
#' @title Data Example 7
#' @description
#' This a symbolic data matrix wint continuos, interval, histograma a set data types.
#' @usage data(example6)
#' @format
#' $C F1 $H F2 M1 M2 M3 M4 M5 $I F3 F3 $H F4 M1 M2 M3 $C F5 \cr
#' Case1 $C 2.8 $H 5 0.1 0.2 0.3 0.4 0.0 $I 1 2 $H 3 0.1 0.7 0.2 $C 6.0 \cr
#' Case2 $C 1.4 $H 5 0.2 0.1 0.5 0.1 0.2 $I 3 9 $H 3 0.6 0.3 0.1 $C 8.0 \cr
#' Case3 $C 3.2 $H 5 0.1 0.1 0.2 0.1 0.5 $I -1 4 $H 3 0.2 0.2 0.6 $C -7.0 \cr
#' Case4 $C -2.1 $H 5 0.4 0.1 0.1 0.1 0.3 $I 0 2 $H 3 0.9 0.0 0.1 $C 0.0 \cr
#' Case5 $C -3.0 $H 5 0.6 0.1 0.1 0.1 0.1 $I -4 -2 $H 3 0.6 0.0 0.4 $C -9.5 \cr
#'
#' @examples
#' data(example7)
#' example7
#' @keywords datasets
"example7"
#' @name ex_cfa1
#' @aliases ex_cfa1
#' @title Correspondence Analysis Example
#' @description Correspondence Analysis for Symbolic MultiValued Variables example.
#' @usage data(ex_cfa1)
#' @references Rodriguez, O. (2011).
#' Correspondence Analysis for Symbolic MultiValued Variables. Workshop in Symbolic
#' Data Analysis Namur, Belgium
#' @keywords datasets
"ex_cfa1"
#' @name ex_cfa2
#' @aliases ex_cfa2
#' @title Correspondence Analysis Example
#' @description Correspondence Analysis for Symbolic MultiValued Variables example.
#' @usage data(ex_cfa2)
#' @references Rodriguez, O. (2011).
#' Correspondence Analysis for Symbolic MultiValued Variables. Workshop in Symbolic
#' Data Analysis Namur, Belgium
#' @keywords datasets
"ex_cfa2"
#' @name ex_mcfa1
#' @title Multiple Correspondence Analysis Example
#' @description example for the sym.mcfa function.
#' @usage data(ex_mcfa1)
#' @examples
#' data("ex_mcfa1")
#' sym.table <- classic.to.sym(ex_mcfa1,
#' concept = suspect,
#' hair = sym.set(hair),
#' eyes = sym.set(eyes),
#' region = sym.set(region))
#'
#' res <- sym.mcfa(sym.table, c(1,2))
#' mcfa.scatterplot(res[,1], res[,2], sym.data = sym.table, pos.var = c(1,2))
#'
#' @keywords datasets
"ex_mcfa1"
#' @name ex_mcfa2
#' @title Multiple Correspondence Analysis Example
#' @description example for the sym.mcfa function.
#' @usage data(ex_mcfa2)
#' @examples
#' data("ex_mcfa2")
#'
#'ex <- classic.to.sym(ex_mcfa2,
#' concept = employee_id,
#' variables = c(employee_id, salary, region, evaluation, years_worked),
#' salary = sym.set(salary),
#' region = sym.set(region),
#' evaluation = sym.set(evaluation),
#' years_worked = sym.set(years_worked))
#'
#'res <- sym.mcfa(ex, c(1,2,3,4))
#'mcfa.scatterplot(res[,1], res[,2], sym.data = ex, pos.var = c(1,2,3,4))
#'
#' @keywords datasets
"ex_mcfa2"
#' @name lynne1
#' @aliases lynne1
#' @title Symbolic interval data example.
#' @description
#' Symbolic data matrix with all the variables of interval type.
#' @usage data(lynne1)
#'
#' @references
#' Billard L. and Diday E. (2006).
#' Symbolic data analysis: Conceptual statistics and data mining. Wiley, Chichester.
#' @examples
#' data(lynne1)
#' lynne1
#' @keywords datasets
"lynne1"
#' @name oils
#' @aliases olils
#' @title Ichino Oils example data.
#' @description
#' Symbolic data matrix with all the variables of interval type.
#' @usage data(oils)
#' @format
#' $I GRA GRA $I FRE FRE $I IOD IOD $I SAP SAP \cr
#' L $I 0.930 0.935 $I -27 -18 $I 170 204 $I 118 196 \cr
#' P $I 0.930 0.937 $I -5 -4 $I 192 208 $I 188 197 \cr
#' Co $I 0.916 0.918 $I -6 -1 $I 99 113 $I 189 198 \cr
#' S $I 0.920 0.926 $I -6 -4 $I 104 116 $I 187 193 \cr
#' Ca $I 0.916 0.917 $I -25 -15 $I 80 82 $I 189 193 \cr
#' O $I 0.914 0.919 $I 0 6 $I 79 90 $I 187 196 \cr
#' B $I 0.860 0.870 $I 30 38 $I 40 48 $I 190 199 \cr
#' H $I 0.858 0.864 $I 22 32 $I 53 77 $I 190 202 \cr
#'
#' @references
#' Cazes P., Chouakria A., Diday E. et Schektman Y. (1997). Extension de l'analyse en
#' composantes principales a des donnees de type intervalle, Rev. Statistique Appliquee,
#' Vol. XLV Num. 3 pag. 5-24, France.
#' @examples
#' data(oils)
#' oils
#' @keywords datasets
"oils"
#' @name ex_mcfa1
#' @title Multiple Correspondence Analysis Example
#' @description example for the sym.mcfa function.
#' @examples
#' data("ex_mcfa1")
#' sym.table <- classic.to.sym(
#' x = ex_mcfa1,
#' concept = "suspect",
#' variables = c(hair, eyes, region),
#' hair = sym.set(hair),
#' eyes = sym.set(eyes),
#' region = sym.set(region)
#' )
#' sym.table
#' @keywords datasets
"ex_mcfa1"
#' @name USCrime
#' @aliases USCrime
#' @title Us crime classic data table
#' @description
#' Us crime classic data table that can be used to generate symbolic data tables.
#' @usage data(USCrime)
#' @source http://archive.ics.uci.edu/ml/
#' @references
#' HASTIE, T., TIBSHIRANI, R. and FRIEDMAN, J. (2008). The Elements of Statistical Learning:
#' Data Mining, Inference and Prediction. New York: Springer.
#' @examples
#' \dontrun{
#' data(USCrime)
#' us.crime <- USCrime
#' dim(us.crime)
#' head(us.crime)
#' summary(us.crime)
#' names(us.crime)
#' nrow(us.crime)
#' result <- classic.to.sym(us.crime,
#' concept = "state",
#' variables = c(NumInShelters, NumImmig),
#' variables.types = c(
#' NumInShelters = type.histogram(),
#' NumImmig = type.histogram()
#' )
#' )
#' result
#' }
#' @keywords datasets
"USCrime"
#' @name int_prost_test
#' @aliases int_prost_test
#' @title Linear regression model data example.
#' @description
#' Linear regression model interval-valued data example.
#' @usage data(int_prost_test)
#' @references
#' HASTIE, T., TIBSHIRANI, R. and FRIEDMAN, J. (2008). The Elements of Statistical Learning:
#' Data Mining, Inference and Prediction. New York: Springer.
#' @keywords datasets
"int_prost_test"
#' @name int_prost_train
#' @aliases int_prost_train
#' @title Linear regression model data example.
#' @description
#' Linear regression model interval-valued data example.
#' @usage data(int_prost_train)
#' @references
#' HASTIE, T., TIBSHIRANI, R. and FRIEDMAN, J. (2008). The Elements of Statistical Learning:
#' Data Mining, Inference and Prediction. New York: Springer.
#' @keywords datasets
"int_prost_train"
#' @name uscrime_int
#' @aliases uscrime_int
#' @title Us crime interval data table.
#' @description
#' Us crime classic data table genetated from uscrime data.
#' @usage data(uscrime_int)
#' @references
#' Rodriguez O. (2013). A generalization of Centre and Range method for fitting a linear
#' regression model to symbolic interval data using Ridge Regression, Lasso
#' and Elastic Net methods. The IFCS2013 conference of the International Federation of
#' Classification Societies, Tilburg University Holland.
#' @examples
#' data(uscrime_int)
#' car.data <- uscrime_int
#' res.cm.lasso <- sym.glm(
#' sym.data = car.data, response = 102, method = "cm", alpha = 1,
#' nfolds = 10, grouped = TRUE
#' )
#' plot(res.cm.lasso)
#' plot(res.cm.lasso$glmnet.fit, "norm", label = TRUE)
#' plot(res.cm.lasso$glmnet.fit, "lambda", label = TRUE)
#'
#' pred.cm.lasso <- sym.predict(res.cm.lasso, response = 102, car.data)
#' RMSE.L(car.data$ViolentCrimesPerPop, pred.cm.lasso)
#' RMSE.U(car.data$ViolentCrimesPerPop, pred.cm.lasso)
#' R2.L(car.data$ViolentCrimesPerPop, pred.cm.lasso)
#' R2.U(car.data$ViolentCrimesPerPop, pred.cm.lasso)
#' deter.coefficient(car.data$ViolentCrimesPerPop, pred.cm.lasso)
#' @keywords datasets
"uscrime_int"
#' @name uscrime_intv2
#' @aliases uscrime_intv2
#' @title Us crime interval data table.
#' @description
#' Us crime classic data table genetated from uscrime data.
#' @usage data(uscrime_int)
#' @references
#' Rodriguez O. (2013). A generalization of Centre and Range method for fitting a linear
#' regression model to symbolic interval data using Ridge Regression, Lasso
#' and Elastic Net methods. The IFCS2013 conference of the International Federation of
#' Classification Societies, Tilburg University Holland.
#'
#' @keywords datasets
"uscrime_intv2"
#' @name facedata
#' @aliases facedata
#' @title Face Data Example
#' @description
#' Symbolic data matrix with all the variables of interval type.
#' @usage data('facedata')
#' @format
#' $I;AD;AD;$I;BC;BC;......... \cr
#'
#' HUS1;$I;168.86;172.84;$I;58.55;63.39;.........\cr
#' HUS2;$I;169.85;175.03;$I;60.21;64.38;.........\cr
#' HUS3;$I;168.76;175.15;$I;61.4;63.51;.........\cr
#' INC1;$I;155.26;160.45;$I;53.15;60.21;.........\cr
#' INC2;$I;156.26;161.31;$I;51.09;60.07;.........\cr
#' INC3;$I;154.47;160.31;$I;55.08;59.03;.........\cr
#' ISA1;$I;164;168;$I;55.01;60.03;.........\cr
#' ISA2;$I;163;170;$I;54.04;59;.........\cr
#' ISA3;$I;164.01;169.01;$I;55;59.01;.........\cr
#' JPL1;$I;167.11;171.19;$I;61.03;65.01;.........\cr
#' JPL2;$I;169.14;173.18;$I;60.07;65.07;.........\cr
#' JPL3;$I;169.03;170.11;$I;59.01;65.01;.........\cr
#' KHA1;$I;149.34;155.54;$I;54.15;59.14;.........\cr
#' KHA2;$I;149.34;155.32;$I;52.04;58.22;.........\cr
#' KHA3;$I;150.33;157.26;$I;52.09;60.21;.........\cr
#' LOT1;$I;152.64;157.62;$I;51.35;56.22;.........\cr
#' LOT2;$I;154.64;157.62;$I;52.24;56.32;.........\cr
#' LOT3;$I;154.83;157.81;$I;50.36;55.23;.........\cr
#' PHI1;$I;163.08;167.07;$I;66.03;68.07;.........\cr
#' PHI2;$I;164;168.03;$I;65.03;68.12;.........\cr
#' PHI3;$I;161.01;167;$I;64.07;69.01;.........\cr
#' ROM1;$I;167.15;171.24;$I;64.07;68.07;.........\cr
#' ROM2;$I;168.15;172.14;$I;63.13;68.07;.........\cr
#' ROM3;$I;167.11;171.19;$I;63.13;68.03;.........\cr
#' @references
#' Billard L. and Diday E. (2006).
#' Symbolic data analysis: Conceptual statistics and data mining. Wiley, Chichester.
#' @examples
#' \dontrun{
#' data(facedata)
#' res.vertex.ps <- sym.interval.pc(facedata,'vertex',150,FALSE,FALSE,TRUE)
#' class(res.vertex.ps$sym.prin.curve) <- c('sym.data.table')
#' sym.scatterplot(res.vertex.ps$sym.prin.curve[,1], res.vertex.ps$sym.prin.curve[,2],
#' labels=TRUE,col='red',main='PSC Face Data')
#' }
#' @keywords datasets
"facedata"
#' @name VeterinaryData
#' @aliases VeterinaryData
#' @title Symbolic interval data example
#' @description
#' Symbolic data matrix with all the variables of interval type.
#' @usage data(VeterinaryData)
#' @format
#' $I Height Height $I Weight Weight \cr
#'
#' 1 $I 120.0 180.0 $I 222.2 354.0\cr
#'
#' 2 $I 158.0 160.0 $I 322.0 355.0\cr
#'
#' 3 $I 175.0 185.0 $I 117.2 152.0\cr
#'
#' 4 $I 37.9 62.9 $I 22.2 35.0\cr
#'
#' 5 $I 25.8 39.6 $I 15.0 36.2\cr
#'
#' 6 $I 22.8 58.6 $I 15.0 51.8\cr
#'
#' 7 $I 22.0 45.0 $I 0.8 11.0\cr
#'
#' 8 $I 18.0 53.0 $I 0.4 2.5\cr
#'
#' 9 $I 40.3 55.8 $I 2.1 4.5\cr
#'
#' 10 $I 38.4 72.4 $I 2.5 6.1\cr
#'
#'
#'
#' @references
#' Billard L. and Diday E. (2006).
#' Symbolic data analysis: Conceptual statistics and data mining. Wiley, Chichester.
#' @examples
#' data(VeterinaryData)
#' VeterinaryData
#' @keywords datasets
"VeterinaryData"
#' @name hardwoodBrito
#' @aliases hardwoodBrito
#' @title Hard Wood Data Example
#' @description
#' Symbolic Histogram matrix.
#' @usage data('hardwoodBrito')
#' @references
#' Brito P. and Dias S. (2022).
#' Analysis of Distributional Data. CRC Press, United States of America.
#' @examples
#' \dontrun{
#' data(hardwoodBrito)
#' hardwoodBrito
#' }
#' @keywords datasets
"hardwoodBrito"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.