Nothing
library(RSNNS)
set.seed(2)
data(iris)
#shuffle the vector
df <- iris[sample(nrow(iris)),]
dfValues <- df[,1:4]
dfTargets <- decodeClassLabels(df[,5])
#dfTargets <- decodeClassLabels(df[,5], valTrue=0.9, valFalse=0.1)
df <- splitForTrainingAndTest(dfValues, dfTargets, ratio=0.15)
#normalize data
df <- normTrainingAndTestSet(df)
model <- mlp(df$inputsTrain, df$targetsTrain, size=5, learnFunc="Quickprop", learnFuncParams=c(0.1, 2.0, 0.0001, 0.1),
maxit=50, inputsTest=df$inputsTest, targetsTest=df$targetsTest)
#model <- mlp(df$inputsTrain, df$targetsTrain, size=5, learnFunc="BackpropBatch", learnFuncParams=c(10, 0.1),
# maxit=100, inputsTest=df$inputsTest, targetsTest=df$targetsTest)
#model <- mlp(df$inputsTrain, df$targetsTrain, size=5, learnFunc="SCG", learnFuncParams=c(0, 0, 0, 0),
# maxit=30, inputsTest=df$inputsTest, targetsTest=df$targetsTest)
#model <- rbfDDA(df$inputsTrain, df$targetsTrain)
#model <- elman(df$inputsTrain, df$targetsTrain, size=5, learnFuncParams=c(0.1), maxit=100, inputsTest=df$inputsTest, targetsTest=df$targetsTest)
#model <- rbf(df$inputsTrain, df$targetsTrain, size=40, maxit=200, initFuncParams=c(-4, 4, 0.0, 0.2, 0.04),
# learnFuncParams=c(1e-3, 0, 1e-3, 0.1, 0.8), linOut=FALSE)
#model <- rbf(df$inputsTrain, df$targetsTrain, size=40, maxit=600, initFuncParams=c(0, 1, 0.0, 0.2, 0.04),
# learnFuncParams=c(1e-5, 0, 1e-5, 0.1, 0.8), linOut=TRUE)
##experimental..:
##model <- rbf(df$inputsTrain, df$targetsTrain, size=20, maxit=50, initFunc="RBF_Weights_Kohonen",
## initFuncParams=c(50, 0.4, 0), learnFuncParams=c(0.01, 0, 0.01, 0.1, 0.8))
#summary(model)
par(mfrow=c(2,2))
plotIterativeError(model)
predictions <- predict(model,df$inputsTest)
plotRegressionError(df$targetsTest[,2], predictions[,2])
confusionMatrix(df$targetsTrain,fitted.values(model))
confusionMatrix(df$targetsTest,predictions)
plotROC(fitted.values(model)[,2], df$targetsTrain[,2])
plotROC(predictions[,2], df$targetsTest[,2])
#confusion matrix with 402040-method
confusionMatrix(df$targetsTrain, encodeClassLabels(fitted.values(model),method="402040", l=0.4, h=0.6))
model
weightMatrix(model)
summary(model)
extractNetInfo(model)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.