demo/iris.R

library(RSNNS)

set.seed(2)

data(iris)

#shuffle the vector
df <- iris[sample(nrow(iris)),]

dfValues <- df[,1:4]
dfTargets <- decodeClassLabels(df[,5])
#dfTargets <- decodeClassLabels(df[,5], valTrue=0.9, valFalse=0.1)

df <- splitForTrainingAndTest(dfValues, dfTargets, ratio=0.15)

#normalize data
df <- normTrainingAndTestSet(df)

model <- mlp(df$inputsTrain, df$targetsTrain, size=5, learnFunc="Quickprop", learnFuncParams=c(0.1, 2.0, 0.0001, 0.1), 
             maxit=50, inputsTest=df$inputsTest, targetsTest=df$targetsTest)

#model <- mlp(df$inputsTrain, df$targetsTrain, size=5, learnFunc="BackpropBatch", learnFuncParams=c(10, 0.1), 
#    maxit=100, inputsTest=df$inputsTest, targetsTest=df$targetsTest)

#model <- mlp(df$inputsTrain, df$targetsTrain, size=5, learnFunc="SCG", learnFuncParams=c(0, 0, 0, 0), 
#    maxit=30, inputsTest=df$inputsTest, targetsTest=df$targetsTest)


#model <- rbfDDA(df$inputsTrain, df$targetsTrain)

#model <- elman(df$inputsTrain, df$targetsTrain, size=5, learnFuncParams=c(0.1), maxit=100, inputsTest=df$inputsTest, targetsTest=df$targetsTest)

#model <- rbf(df$inputsTrain, df$targetsTrain, size=40, maxit=200, initFuncParams=c(-4, 4,  0.0,  0.2,  0.04), 
#             learnFuncParams=c(1e-3, 0, 1e-3, 0.1, 0.8), linOut=FALSE)

#model <- rbf(df$inputsTrain, df$targetsTrain, size=40, maxit=600, initFuncParams=c(0, 1,  0.0,  0.2,  0.04), 
#             learnFuncParams=c(1e-5, 0, 1e-5, 0.1, 0.8), linOut=TRUE)
 
##experimental..:
##model <- rbf(df$inputsTrain, df$targetsTrain, size=20, maxit=50, initFunc="RBF_Weights_Kohonen",
##    initFuncParams=c(50,  0.4,  0), learnFuncParams=c(0.01, 0, 0.01, 0.1, 0.8))

#summary(model)

par(mfrow=c(2,2))

plotIterativeError(model)

predictions <- predict(model,df$inputsTest)

plotRegressionError(df$targetsTest[,2], predictions[,2])

confusionMatrix(df$targetsTrain,fitted.values(model))
confusionMatrix(df$targetsTest,predictions)

plotROC(fitted.values(model)[,2], df$targetsTrain[,2])
plotROC(predictions[,2], df$targetsTest[,2])

#confusion matrix with 402040-method
confusionMatrix(df$targetsTrain, encodeClassLabels(fitted.values(model),method="402040", l=0.4, h=0.6))

model

weightMatrix(model)

summary(model)

extractNetInfo(model)

Try the RSNNS package in your browser

Any scripts or data that you put into this service are public.

RSNNS documentation built on May 29, 2024, 4:37 a.m.