FGM | R Documentation |
Density function, distribution function, quantile function, random generation.
dFGM(u, v, alpha, log = FALSE)
pFGM(u, v, alpha, lower.tail=TRUE, log.p = FALSE)
qFGM(p, alpha, lower.tail=TRUE, log.p = FALSE)
rFGM(n, alpha)
u , v |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
alpha |
shape parameter. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
The FGM is defined by the following distribution function
C(u,v) = u*v*(1+\alpha*(1-u)*(1-v))
for all u,v
in [0,1] and \alpha
in [0,1].
When lower.tail=FALSE
, pFGM
returns the survival copula
P(U > u, V > v)
.
dFGM
gives the density,
pFGM
gives the distribution function,
qFGM
gives the quantile function, and
rFGM
generates random deviates.
The length of the result is determined by n
for
rFGM
, and is the maximum of the lengths of the
numerical parameters for the other functions.
The numerical parameters other than n
are recycled to the
length of the result. Only the first elements of the logical
parameters are used.
Christophe Dutang
Nelsen, R. (2006), An Introduction to Copula, Second Edition, Springer.
#####
# (1) density function
u <- v <- seq(0, 1, length=25)
cbind(u, v, dFGM(u, v, 1/2))
cbind(u, v, outer(u, v, dFGM, alpha=1/2))
#####
# (2) distribution function
cbind(u, v, pFGM(u, v, 1/2))
cbind(u, v, outer(u, v, pFGM, alpha=1/2))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.