dataRTDE | R Documentation |
Data object used for a Tail Dependence model.
dataRTDE(obs, simu.nb, simu.marg=c("ufrechet", "upareto"),
simu.cop=c("indep", "FGM", "Frank"), simu.cop.par=NULL,
contamin.eps=NULL, contamin.method=c("NA","max+","+"),
contamin.marg=c("ufrechet", "upareto"),
contamin.cop=c("indep", "FGM", "Frank"),
contamin.cop.par=NULL, control=list())
## S3 method for class 'dataRTDE'
print(x, ...)
## S3 method for class 'dataRTDE'
summary(object, ...)
## S3 method for class 'dataRTDE'
plot(x, which=1:2, ...)
obs |
bivariate numeric dataset. |
simu.nb |
a numeric for the sample size of simulated data. |
simu.marg |
a character string for the marginal distribution:
either |
simu.cop |
a character string ofr the copula:
either |
simu.cop.par |
a numeric for the copula parameter, default to |
contamin.eps |
a numeric for the percentage (of |
contamin.method |
a character string for the contamination method:
either |
contamin.marg |
a character string for the marginal distribution:
either |
contamin.cop |
a character string ofr the copula:
either |
contamin.cop.par |
a numeric for the copula parameter, default to |
control |
A list of control paremeters. Unused. |
x , object |
an R object inheriting from |
... |
arguments to be passed to subsequent methods. |
which |
an integer (1 or 2) to specify whether to plot in original scale or unit-Pareto scale, respectively. |
The function dataRTDE
handles empirical or simulated data and may
add a contamination.
When obs
is provided, dataRTDE
just wraps the
two-column matrix (X_i, Y_i)_i
.
When simu.XXX
are provided,
dataRTDE
simulates random vectors (X_i, Y_i)_i
from the copula simu.cop
with parameter simu.cop.par
and
marginal simu.marg
.
Note that end-user must choose between empirical data (obs
is provided) and simulated
data (simu.XXX
are provided). Not both can be provided.
In addition to data handling (X_i, Y_i)_i
,
a contamination can be processed by adding new simulated points (\tilde X_i, \tilde Y_i)_i
when contamin.method != "NA"
.
Those points (\tilde X_i, \tilde Y_i)_i
are simulated from the copula
contamin.cop
with parameter contamin.cop.par
and marginal contamin.cop.par
.
If contamin.method != "+"
, the points (\tilde X_i, \tilde Y_i)_i
are the contaminations,
while if contamin.method != "max+"
the contaminations are obtained by adding the
component-wise maximum of the data: (\tilde X_i + X_{n,n}, \tilde Y_i)_i + Y_{n,n}
,
where X_{n,n}=max(X_1,...,X_n)
, idem for Y_{n,n}
.
dataRTDE
returns an object of class "dataRTDE"
having the following components:
n
rownumber of data
.
n0
rownumber of contamin
.
data
original or simulated data.
contamin
contaminated data.
Christophe Dutang
C. Dutang, Y. Goegebeur, A. Guillou (2014), Robust and bias-corrected estimation of the coefficient of tail dependence, Volume 57, Insurance: Mathematics and Economics
This work was supported by a research grant (VKR023480) from VILLUM FONDEN and an international project for scientific cooperation (PICS-6416).
See fitRTDE
for the fitting process and
zvalueRTDE
for the z-value computation.
#####
# (1) simulation
n <- 100
x <- dataRTDE(simu.nb=n, simu.marg="ufrechet", simu.cop="indep")
print(x)
summary(x)
plot(x, xlab="x", ylab="y")
#####
# (2) part of the workers' compensation dataset
x1 <- c(
21.798086, 22.640528, 22.572010, 24.789710, 25.876764, 28.033613,
22.525887, 12.004031, 12.713178, 13.596610, 14.811727, 12.774073,
20.245789, 24.242468, 50.216515, 56.099793, 58.109747, 67.807105,
73.852437, 84.208474, 83.604216, 19.507341, 20.810822, 23.838122,
24.212193, 25.367578, 35.401344, 37.580989, 12.428727, 13.492474,
23.471988, 24.101833, 24.766193, 26.078216)
x2 <- c(
0.538707, 0.439184, 1.059775, 0.560013, 1.004997, 1.097314, 0.609833, 0.270222,
0.229566, 0.596850, 0.196539, 0.134248, 0.489312, 0.418218, 0.769208, 0.649707,
0.503919, 0.675466, 0.545745, 1.562266, 0.931762, 0.291125, 0.499927, 0.151084,
0.141910, 0.300373, 0.119761, 0.141300, 0.377662, 0.169574, 0.243585, 0.061215,
0.055272, 0.312816, 0.160196, 0.623029, 0.280707, 0.174422, 0.176666, 0.153907,
0.605122, 0.664457, 0.348918, 0.370878)
obs <- dataRTDE(cbind(x1, x2))
obs
summary(obs)
plot(obs)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.