| MDPD | R Documentation |
Computes the power divergence statistics then used a minimization problem.
MDPD(theta, densfun, obs, alpha, ..., control=list())
theta |
the parameter of the distribution given as a vector. |
densfun |
a function computing the theoretical density function. |
obs |
a numeric vector of observations |
alpha |
a numeric for the power divergence parameter. |
... |
further arguments to be passed to the density function. |
control |
A list of control paremeters. See section Details. |
The Power Divergence for a density function f and
observations X_1,...,X_n is defined as
\Delta(f,\alpha) = \int_{R} f^{1+\alpha}(x)dx-\left ( 1+\frac{1}{\alpha} \right )
\frac{1}{n} \sum_{i=1}^n f^\alpha(X_i)
for \alpha> 0
\Delta(f,0) = -\frac{1}{n}\sum_{i=1}^n \log f(X_i)
for \alpha = 0.
The control argument is a list that can supply any of the
following components:
epsa small positive floating-point number used when
integrate stalled, default to 1e-3.
tolthe desired accuracy used in the integrate function
when computing the power divergence, default to 1e-3.
lowerthe lower bound of the domain of the density function, default to 1.
upperthe lower bound of the domain of the density function, default to infinity.
MDPD returns the power divergence against the density function densfun
as a numeric.
Christophe Dutang
Basu, A., Harris, I.R., Hjort, N.L., Jones, M.C., (1998). Robust and efficient estimation by minimizing a density power divergence, Biometrika, 85, 549-559.
C. Dutang, Y. Goegebeur, A. Guillou (2014), Robust and bias-corrected estimation of the coefficient of tail dependence, Insurance: Mathematics and Economics
This work was supported by a research grant (VKR023480) from VILLUM FONDEN and an international project for scientific cooperation (PICS-6416).
#####
# (1) small example
omega <- 1/2
m <- 10
n <- 100
obs <- cbind(rupareto(n), rupareto(n)) + rupareto(n)
#unit Pareto transform
z <- zvalueRTDE(obs, omega, nbpoint=m, output="relexcess")
MDPD(c(1/2, 1/4), dEPD, z$Z, alpha=0, rho=-1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.