# R/is_leslie_matrix.R In Rage: Life History Metrics from Matrix Population Models

#### Documented in is_leslie_matrix

```#' Determine if a matrix is a Leslie matrix population model
#'
#' Checks if a given matrix is a Leslie matrix.
#' A matrix is determined to be a Leslie matrix if it satisfies the following
#' conditions:
#' * All elements of A are non-negative.
#' * The subdiagonal elements of A, excluding the last column, are all between 0
#'  and 1.
#' * The sum of the elements in the first row (representing reproduction) of A
#' is positive.
#' * The upper triangle of A, excluding the first row, contains only 0s.
#' * The diagonal of A, excluding the top-left and bottom-right corners contain
#' only 0s.
#' * The lower triangle of A, excluding the subdiagonal, contains only 0s.
#'
#' @param A Matrix to be tested
#' @param includes_mat_F A logical argument (default `TRUE`) indicating whether
#'   A is expected to include fecundity. The idea here is that A may not include
#'   fertility, but could still be a valid Leslie matrix if fertility was truly
#'   measured to be 0, or if fertility was not measured at all. Thus, this
#'   argument relaxes the test for the first row of A summing to a positive
#'   value.
#'
#' @return A logical value indicating whether the matrix is a Leslie matrix or
#' not
#'
#' @examples
#' A <- matrix(c(
#'   0.1, 1.2, 1.1,
#'   0.1, 0.0, 0.0,
#'   0.0, 0.2, 0.3
#' ), nrow = 3, byrow = TRUE)
#' is_leslie_matrix(A) # true
#' A <- matrix(c(
#'   0.1, 1.2, 1.1,
#'   0.1, 0.2, 0.1,
#'   0.2, 0.3, 0.3
#' ), nrow = 3, byrow = TRUE)
#' is_leslie_matrix(A) # false
#'
#' data(leslie_mpm1)
#' A <- leslie_mpm1\$matU + leslie_mpm1\$matF
#' is_leslie_matrix(A) # false
#'
#' @family transformation
#' @export is_leslie_matrix
#' @author Owen Jones <jones@biology.sdu.dk>
is_leslie_matrix <- function(A, includes_mat_F = TRUE) {
# Validation of input
# A must be square matrix and at least dimension 2
if (!is.matrix(A) || nrow(A) != ncol(A) || nrow(A) < 2) {
stop("A must be a square matrix with at least dimension 2")
}

n <- nrow(A)
# non-negative elements
test1 <- !any(A < 0)

# Subdiagonal - all between 0 and 1
if (n > 2) {
sd <- diag(A[-1, -ncol(A)])
}
if (n == 2) {
sd <- A[2, 1]
}
test2 <- !any(sd < 0, sd > 1)

# top row - sum is positive
if (includes_mat_F) {
test3 <- sum(A[1, ]) > 0
} else {
test3 <- TRUE
}

upper_tri <- upper.tri(A)
upper_tri[1, ] <- FALSE

# zeros in upper triangle, not including first row
test4 <- all(A[upper_tri] == 0)

# zeros in the diagonal, except [1,1] and [n,n] positions
diagIndicator <- diag(TRUE, n)
diagIndicator[1, 1] <- FALSE
diagIndicator[n, n] <- FALSE
A[diagIndicator]
test5 <- all(A[diagIndicator] == 0)

# zeros in lower triangle (not including the survival sub-diagonal)
lower_tri_1 <- lower.tri(A)
sd <- data.frame(
r = 2:nrow(lower_tri_1),
cc = 1:(nrow(lower_tri_1) - 1)
)
for (i in seq_len(nrow(sd))) {
lower_tri_1[sd\$r[i], sd\$cc[i]] <- FALSE
}
test6 <- all(A[lower_tri_1] == 0)

return(all(test1, test2, test3, test4, test5, test6))
}
```

## Try the Rage package in your browser

Any scripts or data that you put into this service are public.

Rage documentation built on Sept. 30, 2023, 1:06 a.m.