Nothing

```
#' Calculate mean and variance of life expectancy from a matrix population model
#'
#' Applies Markov chain approaches to obtain mean and variance of life
#' expectancy from a matrix population model (MPM).
#'
#' @param matU The survival component of a MPM (i.e., a square projection matrix
#' reflecting survival-related transitions; e.g., progression, stasis, and
#' retrogression). Optionally with named rows and columns indicating the
#' corresponding life stage names.
#' @param start The index (or stage name) of the first stage of the life cycle
#' which the user considers to be the beginning of life. Defaults to \code{1}.
#' If set to `NULL` the function returns mean life expectancy from each of the
#' stages of the MPM.
#' @param mixdist A vector with a length equal to the dimension of the MPM
#' defining how the function should average the output over the. possible
#' starting states. See section \emph{Starting from multiple stages}. If this
#' argument is used, `start` must be set to `NULL`.
#'
#' @section Starting from multiple stages:
#' Sometimes, it is necessary to calculate life expectancy considering multiple
#' starting stage classes instead of just a single stage from which all
#' individuals begin their lives. This scenario arises when there are several
#' possible stages at which an individual can start a particular life event,
#' such as reproductive maturity.
#' To handle such cases, the function provides support for multiple starting
#' stage classes. When calculating life expectancy in this context, the outputs
#' should be averaged using weights determined by the distribution of
#' individuals across these stages. To achieve this, the `start` argument should
#' be set to `NULL`, indicating that the starting stage is not specified, and
#' the `mixdist` argument should be utilized.
#' In the context described, The `mixdist` argument expects a vector that
#' represents the proportion of individuals with their first reproduction in
#' each stage of the MPM. By providing this distribution, the function
#' calculates the mean lifespan by appropriately weighting the life expectancies
#' corresponding to each starting stage.
#' For a practical example that demonstrates this usage, please refer to the
#' code example below.
#'
#' @return Returns life expectancy in the units of the projection interval
#' (`ProjectionInterval`) of the MPM. If \code{matU} is singular (often
#' indicating infinite life expectancy), returns \code{NA}.
#'
#' @author Christine M. Hernández <cmh352@cornell.edu>
#' @author Owen R. Jones <jones@biology.sdu.dk>
#'
#' @family life history traits
#'
#' @references Caswell, H. 2001. Matrix Population Models: Construction,
#' Analysis, and Interpretation. Sinauer Associates; 2nd edition. ISBN:
#' 978-0878930968
#'
#' @examples
#' data(mpm1)
#'
#' # mean life expectancy starting from stage class 2
#' life_expect_mean(mpm1$matU, start = 2)
#'
#' # equivalent using named life stages
#' life_expect_mean(mpm1$matU, start = "small")
#'
#' # mean life expectancies starting from each of the stages
#' life_expect_mean(mpm1$matU, start = NULL)
#'
#' # mean life expectancy starting from first reproduction, where this varies
#' # across individuals
#' rep_stages <- repro_stages(mpm1$matF)
#' (n1 <- mature_distrib(mpm1$matU, start = 2, repro_stages = rep_stages))
#' life_expect_mean(mpm1$matU, mixdist = n1, start = NULL)
#'
#' # variance of life expectancy from stage class 1
#' life_expect_var(mpm1$matU, start = 1)
#'
#' # variance of life expectancy from stage class 1
#' life_expect_var(mpm1$matU, start = "seed")
#'
#' # variance of life expectancy from each stage class
#' life_expect_var(mpm1$matU, start = NULL)
#'
#' # variance of life expectancies with a set mixing distribution
#' life_expect_var(mpm1$matU, mixdist = c(0.0, 0.1, 0.3, 0.1, 0.5), start = NULL)
#'
#' # setting mixdist to ignore all but one stage should produce the same result
#' # as setting the start argument to that stage
#' life_expect_mean(mpm1$matU, start = 3)
#' life_expect_mean(mpm1$matU, mixdist = c(0, 0, 1, 0, 0), start = NULL)
#'
#' @rdname life_expect
#' @export life_expect_mean
life_expect_mean <- function(matU, mixdist = NULL, start = 1L) {
# validate arguments
# You cannot use both mixdist and start.
if (!is.null(mixdist) && !is.null(start)) {
stop("You cannot apply the mixing distribution and also specify a starting
state. The mixing distribution defines how you want the function to
average over all possible starting states.")
}
# check that the MPM is valid
checkValidMat(matU, warn_surv_issue = TRUE)
# check that, if it is not NULL, start is valid (i.e. that is it an integer or
# stage name that matches the MPM)
if (!is.null(start)) {
checkValidStartLife(start, matU, start_vec = TRUE)
}
# if start is a character string (e.g. a stage name) turn it into a numeric.
if (inherits(start, "character")) {
startNumeric <- match(start, colnames(matU))
} else {
startNumeric <- start
}
# if start is not feasible, throw an error
if (!is.null(start)) {
if (!startNumeric %in% 1:nrow(matU)) {
stop("The start value must match a stage name of matU, or be an integer
between 1 and the number of stages.")
}
}
matDim <- dim(matU)[1]
## Calculate Ex(R | current state)
# This is an alternative to exactLTRE::fundamental_matrix, to avoid dependency
# try calculating fundamental matrix (will fail if matrix singular)
N <- try(solve(diag(matDim) - matU), silent = TRUE)
# If the calculation of fundamental matrix produces an error, then make the
# output NA. Otherwise, calculate the life expectancy.
if (inherits(N, "try-error")) {
expLCond_z <- NA_real_
} else {
expLCond_z <- rep(1, matDim) %*% N
}
# If mixdist is NOT null
if (!is.null(mixdist)) {
expL <- expLCond_z %*% mixdist
expL_out <- as.vector(expL)
names(expL_out) <- colnames(expL)
return(expL_out)
}
# If start is NOT null
if (!is.null(start)) {
return(expLCond_z[startNumeric])
}
if (is.null(start)) {
expLCond_z_out <- as.vector(expLCond_z)
names(expLCond_z_out) <- colnames(expLCond_z)
return(expLCond_z_out)
}
}
# Calculate the variance in lifespan:
# note: this calculates the variance in the number of time steps!
#' @rdname life_expect
#' @export life_expect_var
life_expect_var <- function(matU, mixdist = NULL, start = 1L) {
# validate arguments
# You cannot use both mixdist and start.
if (!is.null(mixdist) && !is.null(start)) {
stop("You cannot apply the mixing distribution and also specify a starting
state. The mixing distribution defines how you want the function to
average over all possible starting states.")
}
# check that the MPM is valid
checkValidMat(matU, warn_surv_issue = TRUE)
# check that, if it is not NULL, start is valid (i.e. that is it an integer or
# stage name that matches the MPM)
if (!is.null(start)) {
checkValidStartLife(start, matU, start_vec = TRUE)
}
# if start is a character string (e.g. a stage name) turn it into a numeric.
if (inherits(start, "character")) {
startNumeric <- match(start, colnames(matU))
} else {
startNumeric <- start
}
matDim <- dim(matU)[1]
# calculate the fundamental matrix
# This is an alternative to exactLTRE::fundamental_matrix, to avoid dependency
# try calculating fundamental matrix (will fail if matrix singular)
N <- try(solve(diag(matDim) - matU), silent = TRUE)
if (inherits(N, "try-error")) {
return(NA_real_)
} else {
expLCond_z_prelim <- life_expect_mean(matU, mixdist = NULL, start = NULL)
# Convert to a matrix, required for the calculations below
expLCond_z <- matrix(expLCond_z_prelim, nrow = 1, ncol = nrow(matU))
colnames(expLCond_z) <- names(expLCond_z_prelim)
## Calculate Ex(R | current state)
## Var(L | current state) using eqn. 5.12 from Hal Caswell (2001)
eT <- matrix(data = 1, ncol = matDim, nrow = 1) # column vector of 1's
varLCond_z <- eT %*% (2 * N %*% N - N) - (expLCond_z)^2
if (is.null(mixdist)) {
outputVar <- varLCond_z
} else {
# variance in LRO due to differences along trajectories:
varL_within <- varLCond_z %*% mixdist
# variance in LRO due to differences among starting states:
varL_between <- t(mixdist) %*% t(expLCond_z^2) -
(t(mixdist) %*% t(expLCond_z))^2
# total variance in lifespan, given the mixing distribution:
outputVar <- varL_within + varL_between
}
if (!is.null(start)) {
return(as.vector(outputVar[startNumeric]))
}
if (is.null(start)) {
outputVar_prelim <- outputVar
outputVar <- as.vector(outputVar_prelim)
names(outputVar) <- colnames(outputVar_prelim)
return(outputVar)
}
}
}
```

**Any scripts or data that you put into this service are public.**

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.