| EuclRandMatrix-class | R Documentation |
Class of Euclidean random matrices.
Objects can be created by calls of the form new("EuclRandMatrix", ...).
More frequently they are created via the generating function
EuclRandMatrix.
Dimvector of positive integers: Dimensions of the random matrix.
Map Object of class "list": list of functions.
Domain Object of class "OptionalrSpace"
domain of the random matrix.
Range Object of class "OptionalrSpace"
range of the random matrix.
Class "EuclRandVariable", directly.
Class "RandVariable", by class "EuclRandVariable".
signature(from = "EuclRandMatrix", to = "EuclRandVarList"):
create a "EuclRandVarList" object from a Euclidean random matrix.
signature(x = "EuclRandMatrix"): generates
a new Euclidean random variable/matrix by extracting elements of
the slot Map of x.
signature(object = "EuclRandMatrix"): accessor function
for slot Dim.
signature(object = "EuclRandMatrix", ): replacement
function for slot Dim.
signature(x = "EuclRandMatrix"): number of columns of x.
signature(x = "EuclRandMatrix"): number of rows of x.
signature(object = "EuclRandMatrix"): dimension
of the Euclidean random variable.
signature(RandVar = "EuclRandMatrix", x = "numeric"):
evaluate the slot Map of RandVar at x.
signature(RandVar = "EuclRandMatrix", x = "matrix"):
evaluate the slot Map of RandVar at x.
signature(RandVar = "EuclRandMatrix", x = "numeric", distr = "Distribution"):
evaluate the slot Map of RandVar at x assuming
a probability space with distribution distr. In case x
does not lie in the support of distr NA is returned.
signature(RandVar = "EuclRandMatrix", x = "matrix", distr = "Distribution"):
evaluate the slot Map of RandVar at rows of x
assuming a probability space with distribution distr. For those
rows of x which do not lie in the support of distr
NA is returned.
signature(x = "EuclRandMatrix"): transposes x. In
addition, the results of the functions in the slot Map of
x are transposed.
signature(object = "EuclRandMatrix")
signature(x = "matrix", y = "EuclRandMatrix"):
matrix multiplication of x and y. Generates
an object of class "EuclRandMatrix".
signature(x = "numeric", y = "EuclRandMatrix"):
matrix multiplication of x and y. Generates
an object of class "EuclRandMatrix".
signature(x = "EuclRandVariable", y = "EuclRandMatrix"):
matrix multiplication of x and y. Generates
an object of class "EuclRandMatrix".
signature(x = "EuclRandMatrix", y = "matrix"):
matrix multiplication of x and y. Generates
an object of class "EuclRandMatrix".
signature(x = "EuclRandMatrix", y = "numeric"):
matrix multiplication of x and y. Generates
an object of class "EuclRandMatrix".
signature(x = "EuclRandMatrix", y = "EuclRandMatrix"):
matrix multiplication of x and y. Generates
an object of class "EuclRandMatrix".
signature(x = "EuclRandMatrix", y = "EuclRandVariable"):
matrix multiplication of x and y. Generates
an object of class "EuclRandMatrix".
signature(e1 = "numeric", e2 = "EuclRandMatrix"):
Given a numeric vector e1, a Euclidean random matrix e2
and an arithmetic operator op, the Euclidean random matrix
e1 op e2 is returned.
signature(e1 = "EuclRandMatrix", e2 = "numeric"):
Given a Euclidean random matrix e1, a numeric vector e2,
and an arithmetic operator op, the Euclidean random matrix
e1 op e2 is returned.
signature(e1 = "EuclRandMatrix", e2 = "EuclRandMatrix"):
Given two Euclidean random matrices e1 and e2,
and an arithmetic operator op, the Euclidean random matrix
e1 op e2 is returned.
signature(x = "EuclRandMatrix"):
Given a "Math" group generic fct, the Euclidean random
matrix fct(x) is returned.
signature(object = "UnivariateDistribution", fun = "EuclRandMatrix", cond = "missing"):
expectation of fun under univariate distributions.
signature(object = "AbscontDistribution", fun = "EuclRandMatrix", cond = "missing"):
expectation of fun under absolutely continuous univariate distributions.
signature(object = "DiscreteDistribution", fun = "EuclRandMatrix", cond = "missing"):
expectation of fun under discrete univariate distributions.
signature(object = "MultivariateDistribution", fun = "EuclRandMatrix", cond = "missing"):
expectation of fun under multivariate distributions.
signature(object = "DiscreteMVDistribution", fun = "EuclRandMatrix", cond = "missing"):
expectation of fun under discrete multivariate distributions.
signature(object = "UnivariateCondDistribution", fun = "EuclRandMatrix", cond = "numeric"):
conditional expectation of fun under conditional univariate distributions.
signature(object = "AbscontCondDistribution", fun = "EuclRandMatrix", cond = "numeric"):
conditional expectation of fun under absolutely continuous conditional univariate distributions.
signature(object = "DiscreteCondDistribution", fun = "EuclRandMatrix", cond = "numeric"):
conditional expectation of fun under discrete conditional univariate distributions.
Matthias Kohl Matthias.Kohl@stamats.de
EuclRandMatrix, RandVariable-class,
EuclRandVariable-class, EuclRandVarList-class,
Distribution-class, Arith,
Math, E
L1 <- list(function(x){x}, function(x){x^2}, function(x){x^3}, function(x){x^4},
function(x){x^5}, function(x){x^6})
L2 <- list(function(x){exp(x)}, function(x){abs(x)},
function(x){sin(x)}, function(x){floor(x)})
R1 <- new("EuclRandMatrix", Map = L1, Dim = as.integer(c(3,2)),
Domain = Reals(), Range = Reals())
dimension(R1)
R1[1:2, 2]
R1[1:2, 1:2]
Map(R1[1,2])
Map(t(R1)[2,1])
R2 <- EuclRandMatrix(Map = L2, ncol = 2, Domain = Reals(), dimension = 1)
dimension(R2)
(DL <- imageDistr(R2, Norm()))
plot(DL)
Map(gamma(R2)) # "Math" group
## "Arith" group
Map(2/R1)
Map(R2 * R2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.