| EuclRandVariable-class | R Documentation |
Class of Euclidean random variables.
Objects can be created by calls of the form new("EuclRandVariable", ...).
More frequently they are created via the generating function
EuclRandVariable.
MapObject of class "list": list of functions.
DomainObject of class "OptionalrSpace":
domain of the random variable.
RangeObject of class "EuclideanSpace":
range of the random variable.
Class "RandVariable", directly.
signature(from = "EuclRandVariable", to = "EuclRandMatrix"):
create a "EuclRandMatrix" object from a Euclidean random variable.
signature(from = "EuclRandVariable", to = "EuclRandVarList"):
create a "EuclRandVarList" object from a Euclidean random variable.
signature(object = "EuclRandVariable"):
replacement function for the slot Range.
signature(x = "EuclRandVariable"): generates
a new Euclidean random variable by extracting elements of
the slot Map of x.
signature(RandVar = "EuclRandVariable", x = "numeric", distr = "missing"):
evaluate the slot Map of RandVar at x.
signature(RandVar = "EuclRandVariable", x = "matrix", distr = "missing"):
evaluate the slot Map of RandVar at rows of x.
signature(RandVar = "EuclRandVariable", x = "numeric", distr = "Distribution"):
evaluate the slot Map of RandVar at x assuming
a probability space with distribution distr. In case x
does not lie in the support of distr NA is returned.
signature(RandVar = "EuclRandVariable", x = "matrix", distr = "Distribution"):
evaluate the slot Map of RandVar at rows of x
assuming a probability space with distribution distr. For those
rows of x which do not lie in the support of distr
NA is returned.
signature(RandVar = "EuclRandVariable", distr = "Distribution"):
image distribution of distr under RandVar. Returns
an object of class "DistrList".
signature(object = "EuclRandVariable"):
dimension of the Euclidean random variable.
signature(x = "EuclRandVariable"):
returns an object of class "EuclRandMatrix" where the
rhe results of the functions in the slot Map of x
are transposed.
signature(x = "matrix", y = "EuclRandVariable"):
matrix multiplication of x and y. Generates
an object of class "EuclRandMatrix".
signature(x = "EuclRandVariable", y = "matrix"):
matrix multiplication of x and y. Generates
an object of class "EuclRandMatrix".
signature(x = "numeric", y = "EuclRandVariable"):
generates an object of class "EuclRandMatrix" (1 x 1 matrix)
by multiplying (scalar/innner product) x and y.
signature(x = "EuclRandVariable", y = "numeric"):
generates an object of class "EuclRandMatrix" (1 x 1 matrix)
by multiplying (scalar/innner product) x and y.
signature(x = "EuclRandVariable", y = "EuclRandVariable"):
generates an object of class "EuclRandMatrix" (1 x 1 matrix)
by multiplying (scalar/innner product) x and y.
signature(x = "EuclRandVariable", y = "EuclRandMatrix"):
matrix multiplication of x and y. Generates
an object of class "EuclRandMatrix".
signature(x = "EuclRandMatrix", y = "EuclRandVariable"):
matrix multiplication of x and y. Generates
an object of class "EuclRandMatrix".
signature(e1 = "numeric", e2 = "EuclRandVariable"):
Given a numeric vector e1, a Euclidean random variable e2
and an arithmetic operator op, the Euclidean random variable
e1 op e2 is returned.
signature(e1 = "EuclRandVariable", e2 = "numeric"):
Given a numeric vector e2, a Euclidean random variable e1
and an arithmetic operator op, the Euclidean random variable
e1 op e2 is returned.
signature(e1 = "EuclRandVariable", e2 = "EuclRandVariable"):
Given two Euclidean random variables e1, e2 and an
arithmetic operator op, the Euclidean random variable
e1 op e2 is returned.
signature(x = "EuclRandVariable"):
Given a "Math" group generic fct, the Euclidean random
variable fct(x) is returned.
signature(object = "UnivariateDistribution", fun = "EuclRandVariable", cond = "missing"):
expectation of fun under univariate distributions.
signature(object = "AbscontDistribution", fun = "EuclRandVariable", cond = "missing"):
expectation of fun under absolutely continuous univariate distributions.
signature(object = "DiscreteDistribution", fun = "EuclRandVariable", cond = "missing"):
expectation of fun under discrete univariate distributions.
signature(object = "MultivariateDistribution", fun = "EuclRandVariable", cond = "missing"):
expectation of fun under multivariate distributions.
signature(object = "DiscreteMVDistribution", fun = "EuclRandVariable", cond = "missing"):
expectation of fun under discrete multivariate distributions.
signature(object = "UnivariateCondDistribution", fun = "EuclRandVariable", cond = "numeric"):
conditional expectation of fun under conditional univariate distributions.
signature(object = "UnivariateCondDistribution", fun = "EuclRandVariable", cond = "numeric"):
conditional expectation of fun under absolutely continuous conditional univariate distributions.
signature(object = "UnivariateCondDistribution", fun = "EuclRandVariable", cond = "numeric"):
conditional expectation of fun under discrete conditional univariate distributions.
Matthias Kohl Matthias.Kohl@stamats.de
EuclRandVariable, RandVariable-class,
EuclRandMatrix-class, EuclRandVarList-class,
Distribution-class, Arith,
Math, E
L1 <- list(function(x){x}, function(x){x^2}, function(x){x^3}, function(x){x^4})
L2 <- list(function(x){exp(x)}, function(x){abs(x)},
function(x){sin(x)}, function(x){floor(x)})
R1 <- new("EuclRandVariable", Map = L1, Domain = Reals(), Range = Reals())
dimension(R1)
Map(R1)
Range(R1)
R1[2]
Map(R1[3])
Map(R1[c(1,2,4)])
Map(R1[2:4])
set.seed(123)
evalRandVar(R1, rnorm(1))
x <- as.matrix(rnorm(10))
res.R1 <- evalRandVar(R1, x)
res.R1[2,,] # results for Map(R1)[[2]](x)
res.R1[2,1,] # results for Map(R1)[[2]](x[1,])
R2 <- EuclRandVariable(L2, Domain = Reals(), dimension = 1)
dimension(R2)
DL1 <- imageDistr(R2, Norm())
plot(DL1)
Domain(R2) <- EuclideanSpace(dimension = 2)
Range(R2) <- EuclideanSpace(dimension = 2)
dimension(R2)
(X <- matrix(c(x, rnorm(10)), ncol = 2))
res.R2 <- evalRandVar(R2, X)
res.R2[3,,1] # results for Map(R2)[[3]](X[,1])
Map(log(abs(R2))) # "Math" group generic
# "Arith" group generic
Map(3 + R1)
Map(c(1,3,5) * R1)
try(1:5 * R1) # error
Map(1:2 * R2)
Map(R2 - 5)
Map(R1 ^ R1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.