Nothing
#' Geometric Brownian Motion
#'
#' @family Generator Functions
#'
#' @author Steven P. Sanderson II, MPH
#'
#' @description Create a Geometric Brownian Motion.
#'
#' @details Geometric Brownian Motion (GBM) is a statistical method for modeling
#' the evolution of a given financial asset over time. It is a type of stochastic
#' process, which means that it is a system that undergoes random changes over
#' time.
#'
#' GBM is widely used in the field of finance to model the behavior of stock
#' prices, foreign exchange rates, and other financial assets. It is based on
#' the assumption that the asset's price follows a random walk, meaning that it
#' is influenced by a number of unpredictable factors such as market trends,
#' news events, and investor sentiment.
#'
#' The equation for GBM is:
#'
#' dS/S = mdt + sdW
#'
#' where S is the price of the asset, t is time, m is the expected return on the
#' asset, s is the volatility of the asset, and dW is a small random change in
#' the asset's price.
#'
#' GBM can be used to estimate the likelihood of different outcomes for a given
#' asset, and it is often used in conjunction with other statistical methods to
#' make more accurate predictions about the future performance of an asset.
#'
#' This function provides the ability of simulating and estimating the parameters
#' of a GBM process. It can be used to analyze the behavior of financial
#' assets and to make informed investment decisions.
#'
#' @param .n Total time of the simulation, how many `n` points in time.
#' @param .num_walks Total number of simulations.
#' @param .delta_time Time step size.
#' @param .initial_value Integer representing the initial value.
#' @param .mu Expected return
#' @param .sigma Volatility
#' @param .dimensions The default is 1. Allowable values are 1, 2 and 3.
#'
#' @examples
#'
#' set.seed(123)
#' geometric_brownian_motion()
#'
#' set.seed(123)
#' geometric_brownian_motion(.dimensions = 3) |>
#' head() |>
#' t()
#'
#' @return A tibble containing the generated random walks with columns depending
#' on the number of dimensions:
#' \itemize{
#' \item `walk_number`: Factor representing the walk number.
#' \item `step_number`: Step index.
#' \item `y`: If `.dimensions = 1`, the value of the walk at each step.
#' \item `x`, `y`: If `.dimensions = 2`, the values of the walk in two dimensions.
#' \item `x`, `y`, `z`: If `.dimensions = 3`, the values of the walk in three dimensions.
#' }
#'
#' The following are also returned based upon how many dimensions there are and
#' could be any of x, y and or z:
#' \itemize{
#' \item `cum_sum`: Cumulative sum of `dplyr::all_of(.dimensions)`.
#' \item `cum_prod`: Cumulative product of `dplyr::all_of(.dimensions)`.
#' \item `cum_min`: Cumulative minimum of `dplyr::all_of(.dimensions)`.
#' \item `cum_max`: Cumulative maximum of `dplyr::all_of(.dimensions)`.
#' \item `cum_mean`: Cumulative mean of `dplyr::all_of(.dimensions)`.
#' }
#'
#' @name geometric_brownian_motion
NULL
#' @export
#' @rdname geometric_brownian_motion
geometric_brownian_motion <- function(.num_walks = 25, .n = 100,
.mu = 0, .sigma = 0.1,
.initial_value = 100,
.delta_time = 0.003,
.dimensions = 1) {
# Tidyeval ----
# Thank you to https://robotwealth.com/efficiently-simulating-geometric-brownian-motion-in-r/
num_sims <- as.numeric(.num_walks)
t <- as.numeric(.n)
mu <- as.numeric(.mu)
sigma <- as.numeric(.sigma)
initial_value <- as.numeric(.initial_value)
delta_time <- as.numeric(.delta_time)
# Checks ----
if (!is.numeric(num_sims) | !is.numeric(t) | !is.numeric(mu) |
!is.numeric(sigma) | !is.numeric(initial_value) | !is.numeric(delta_time)){
rlang::abort(
message = "The parameters of `.n', `.num_walks`, `.mu`, `.sigma`,
`.initial_value`, and `.delta_time` must be numeric.",
use_cli_format = TRUE
)
}
# .mu and .sigma and .detla_time must be >= 0
if (mu < 0 | sigma < 0 | delta_time < 0){
rlang::abort(
message = "The parameters of `.mu`, `.sigma`, and `.delta_time` must be >= 0.",
use_cli_format = TRUE
)
}
# .num_walks and .n must be >= 1
if (num_sims < 1 | t < 1){
rlang::abort(
message = "The parameters of `.num_walks` and `.n` must be >= 1.",
use_cli_format = TRUE
)
}
if (!.dimensions %in% c(1, 2, 3)) {
rlang::abort("Number of dimensions must be 1, 2, or 3.", use_cli = TRUE)
}
# Define dimension names
dim_names <- switch(.dimensions,
`1` = c("y"),
`2` = c("x", "y"),
`3` = c("x", "y", "z"))
# matrix of random draws - one for each day for each simulation
generate_gbm <- function(num_sims){
rand_steps <- purrr::map(
dim_names,
~ exp((mu - sigma * sigma / 2) * delta_time + sigma * stats::rnorm(t) * sqrt(delta_time)) |>
cumprod()
)
# Set column names
# rand_steps <- stats::setNames(rand_steps, dim_names)
# rand_steps <- purrr::map(rand_steps, \(x) dplyr::as_tibble(x)) |>
# purrr::list_cbind()
# colnames(rand_steps) <- dim_names
# rand_steps <- purrr::map(
# rand_steps, \(x) x |>
# unlist(use.names = FALSE)) |>
# dplyr::as_tibble()
#
# # Combine into a tibble
# dplyr::tibble(
# walk_number = factor(num_sims),
# step_number = 1:t
# ) |>
# dplyr::bind_cols(rand_steps)
rand_walk_column_names(rand_steps, dim_names, num_sims, t)
}
res <- purrr::map(1:num_sims, ~ generate_gbm(.x)) |>
dplyr::bind_rows() |>
dplyr::select(walk_number, step_number, dplyr::all_of(dim_names)) |>
dplyr::mutate(walk_number = factor(walk_number, levels = 1:num_sims))
res <- res |>
dplyr::group_by(walk_number) |>
std_cum_sum_augment(.value = dplyr::all_of(dim_names), .initial_value = initial_value) |>
dplyr::ungroup()
res <- res |>
dplyr::group_by(walk_number) |>
std_cum_prod_augment(.value = dplyr::all_of(dim_names), .initial_value = initial_value) |>
dplyr::ungroup()
res <- res |>
dplyr::group_by(walk_number) |>
std_cum_min_augment(.value = dplyr::all_of(dim_names), .initial_value = initial_value) |>
dplyr::ungroup()
res <- res |>
dplyr::group_by(walk_number) |>
std_cum_max_augment(.value = dplyr::all_of(dim_names), .initial_value = initial_value) |>
dplyr::ungroup()
res <- res |>
dplyr::group_by(walk_number) |>
std_cum_mean_augment(.value = dplyr::all_of(dim_names), .initial_value = initial_value) |>
dplyr::ungroup()
# Return
attr(res, "n") <- .n
attr(res, "num_walks") <- .num_walks
attr(res, "mean") <- .mu
attr(res, "sigma") <- .sigma
attr(res, "initial_value") <- .initial_value
attr(res, "delta_time") <- .delta_time
attr(res, "fns") <- "geometric_brownian_motion"
attr(res, "dimension") <- .dimensions
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.