Nothing
#' Brownian Motion
#'
#' @family Generator Functions
#'
#' @author Steven P. Sanderson II, MPH
#'
#' @description Create a Brownian Motion Tibble
#'
#' @details Brownian Motion, also known as the Wiener process, is a
#' continuous-time random process that describes the random movement of particles
#' suspended in a fluid. It is named after the physicist Robert Brown,
#' who first described the phenomenon in 1827.
#'
#' The equation for Brownian Motion can be represented as:
#'
#' W(t) = W(0) + sqrt(t) * Z
#'
#' Where W(t) is the Brownian motion at time t, W(0) is the initial value of the
#' Brownian motion, sqrt(t) is the square root of time, and Z is a standard
#' normal random variable.
#'
#' Brownian Motion has numerous applications, including modeling stock prices in
#' financial markets, modeling particle movement in fluids, and modeling random
#' walk processes in general. It is a useful tool in probability theory and
#' statistical analysis.
#'
#' @param .n Total time of the simulation.
#' @param .num_walks Total number of simulations.
#' @param .delta_time Time step size.
#' @param .initial_value Integer representing the initial value.
#' @param .return_tibble The default is TRUE. If set to FALSE then an object
#' of class matrix will be returned.
#'
#' @examples
#' set.seed(123)
#' brownian_motion()
#'
#' set.seed(123)
#' brownian_motion(.num_walks = 5) |>
#' visualize_walks()
#'
#' @return
#' A tibble/matrix
#'
#' @name brownian_motion
NULL
#' @export
#' @rdname brownian_motion
brownian_motion <- function(.num_walks = 25, .n = 100, .delta_time = 1,
.initial_value = 0, .return_tibble = TRUE) {
# Tidyeval ----
num_sims <- as.numeric(.num_walks)
t <- as.numeric(.n)
initial_value <- as.numeric(.initial_value)
delta_time <- as.numeric(.delta_time)
return_tibble <- as.logical(.return_tibble)
# Checks
if (!is.numeric(num_sims) | !is.numeric(t) | !is.numeric(initial_value) |
!is.numeric(delta_time)){
rlang::abort(
message = "The parameters `.num_walks`, `.n`, `.delta_time`, and `.initial_value` must be numeric.",
use_cli_format = TRUE
)
}
# .num_walks and .n must be >= 1
if (num_sims < 1 | t < 1){
rlang::abort(
message = "The parameters of `.num_walks` and `.n` must be >= 1.",
use_cli_format = TRUE
)
}
# .delta_time must be > 0
if (delta_time <= 0){
rlang::abort(
message = "The parameter `.delta_time` must be > 0.",
use_cli_format = TRUE
)
}
if (!is.logical(return_tibble)){
rlang::abort(
message = "The parameter `.return_tibble` must be either TRUE/FALSE",
use_cli_format = TRUE
)
}
# Matrix of random draws - one for each simulation
rand_matrix <- matrix(stats::rnorm(t * num_sims, mean = 0, sd = sqrt(delta_time)),
ncol = num_sims, nrow = t)
colnames(rand_matrix) <- 1:num_sims
# Get the Brownian Motion and convert to price paths
res <- apply(rbind(rep(initial_value, num_sims), rand_matrix), 2, cumsum)
# Return
if (return_tibble){
res <- res |>
dplyr::as_tibble() |>
dplyr::mutate(t = 1:(t+1)) |>
tidyr::pivot_longer(-t) |>
dplyr::select(name, t, value) |>
purrr::set_names("walk_number", "x", "y") |>
dplyr::mutate(walk_number = factor(walk_number, levels = 1:num_sims)) |>
dplyr::arrange(walk_number, x) |>
rand_walk_helper(.value = initial_value) |>
dplyr::select(-cum_sum, -cum_prod)
}
# Return ----
attr(res, "n") <- .n
attr(res, "num_walks") <- .num_walks
attr(res, "delta_time") <- .delta_time
attr(res, "initial_value") <- .initial_value
attr(res, "return_tibble") <- .return_tibble
attr(res, "fns") <- "brownian_motion"
attr(res, "dimension") <- 1
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.