Nothing
#' Generate Multiple Random Walks with Drift
#'
#' @family Generator Functions
#'
#' @author Steven P. Sanderson II, MPH
#'
#' @details
#' This function generates multiple random walks with a specified drift.
#' Each walk is generated using a normal distribution for the steps, with an
#' additional drift term added to each step.
#'
#' @description
#' This function generates a specified number of random walks, each consisting
#' of a specified number of steps. The steps are generated from a normal
#' distribution with a given mean and standard deviation. An additional drift
#' term is added to each step to introduce a consistent directional component
#' to the walks.
#'
#' @param .num_walks Integer. The number of random walks to generate. Default is 25.
#' @param .n Integer. The number of steps in each random walk. Default is 100.
#' @param .mu Numeric. The mean of the normal distribution used for generating steps. Default is 0.
#' @param .sd Numeric. The standard deviation of the normal distribution used for generating steps. Default is 1.
#' @param .drift Numeric. The drift term to be added to each step. Default is 0.1.
#' @param .initial_value A numeric value indicating the initial value of the walks. Default is 0.
#' @param .dimensions The default is 1. Allowable values are 1, 2 and 3.
#'
#' @examples
#' set.seed(123)
#' random_normal_drift_walk()
#'
#' set.seed(123)
#' random_normal_drift_walk(.dimensions = 3) |>
#' head() |>
#' t()
#'
#' @return A tibble containing the generated random walks with columns depending
#' on the number of dimensions:
#' \itemize{
#' \item `walk_number`: Factor representing the walk number.
#' \item `step_number`: Step index.
#' \item `y`: If `.dimensions = 1`, the value of the walk at each step.
#' \item `x`, `y`: If `.dimensions = 2`, the values of the walk in two dimensions.
#' \item `x`, `y`, `z`: If `.dimensions = 3`, the values of the walk in three dimensions.
#' }
#'
#' The following are also returned based upon how many dimensions there are and
#' could be any of x, y and or z:
#' \itemize{
#' \item `cum_sum`: Cumulative sum of `dplyr::all_of(.dimensions)`.
#' \item `cum_prod`: Cumulative product of `dplyr::all_of(.dimensions)`.
#' \item `cum_min`: Cumulative minimum of `dplyr::all_of(.dimensions)`.
#' \item `cum_max`: Cumulative maximum of `dplyr::all_of(.dimensions)`.
#' \item `cum_mean`: Cumulative mean of `dplyr::all_of(.dimensions)`.
#' }
#'
#' @name random_normal_drift_walk
NULL
#' @rdname random_normal_drift_walk
#' @export
random_normal_drift_walk <- function(.num_walks = 25, .n = 100, .mu = 0, .sd = 1,
.drift = 0.1, .initial_value = 0, .dimensions = 1) {
# Convert inputs to appropriate types
num_walks <- as.integer(.num_walks)
num_steps <- as.integer(.n)
mu <- as.numeric(.mu)
sd <- as.numeric(.sd)
drift <- as.numeric(.drift)
initial_value <- as.numeric(.initial_value)
# Checks
if (num_walks <= 0) {
rlang::abort("Number of walks must be a positive integer.", use_cli = TRUE)
}
if (num_steps <= 0) {
rlang::abort("Number of steps must be a positive integer.", use_cli = TRUE)
}
if (sd <= 0) {
rlang::abort("Standard deviation must be a positive number.", use_cli = TRUE)
}
if (is.na(mu)) {
rlang::abort("Mean must be a number.", use_cli = TRUE)
}
if (is.na(drift)) {
rlang::abort("Drift must be a number.", use_cli = TRUE)
}
if (is.na(initial_value)) {
rlang::abort("Initial value must be a number.", use_cli = TRUE)
}
if (!.dimensions %in% c(1, 2, 3)) {
rlang::abort("Number of dimensions must be 1, 2, or 3.", use_cli = TRUE)
}
# Create drift sequences for each dimension
dr <- purrr::map(
1:.dimensions,
~ seq(from = drift, to = drift * num_steps, length.out = num_steps)
)
# Define dimension names
dim_names <- switch(.dimensions,
`1` = c("y"),
`2` = c("x", "y"),
`3` = c("x", "y", "z"))
# Function to generate a single random walk with drift for multiple dimensions
single_random_walk_with_drift <- function(num_steps, mu, sd, dr) {
walks_per_dim <- purrr::map2(dr, dim_names, function(drift_seq, dim) {
wn <- stats::rnorm(n = num_steps, mean = mu, sd = sd)
rw <- cumsum(wn)
res <- wn + rw + drift_seq
res
})
# Set Column Names
# rand_steps <- stats::setNames(walks_per_dim, dim_names)
# rand_steps <- purrr::map(rand_steps, \(x) dplyr::as_tibble(x)) |>
# purrr::list_cbind()
# colnames(rand_steps) <- dim_names
# rand_steps <- purrr::map(
# rand_steps, \(x) x |>
# unlist(use.names = FALSE)) |>
# dplyr::as_tibble()
rand_walk_column_names(walks_per_dim, dim_names, num_walks, num_steps)
}
# Generate all walks for each dimension
walks <- purrr::map(
1:num_walks,
~ single_random_walk_with_drift(num_steps, mu, sd, dr)
)
# Create a tibble with all walks for all dimensions
res <- dplyr::bind_rows(walks, .id = "walk_number") |>
dplyr::mutate(walk_number = factor(walk_number, levels = 1:num_walks)) |>
dplyr::group_by(walk_number) |>
dplyr::mutate(step_number = 1:num_steps) |>
dplyr::select(walk_number, step_number, dplyr::all_of(dim_names))
res <- res |>
dplyr::group_by(walk_number) |>
std_cum_sum_augment(.value = dplyr::all_of(dim_names), .initial_value = initial_value) |>
dplyr::ungroup()
res <- res |>
dplyr::group_by(walk_number) |>
std_cum_prod_augment(.value = dplyr::all_of(dim_names), .initial_value = initial_value) |>
dplyr::ungroup()
res <- res |>
dplyr::group_by(walk_number) |>
std_cum_min_augment(.value = dplyr::all_of(dim_names), .initial_value = initial_value) |>
dplyr::ungroup()
res <- res |>
dplyr::group_by(walk_number) |>
std_cum_max_augment(.value = dplyr::all_of(dim_names), .initial_value = initial_value) |>
dplyr::ungroup()
res <- res |>
dplyr::group_by(walk_number) |>
std_cum_mean_augment(.value = dplyr::all_of(dim_names), .initial_value = initial_value) |>
dplyr::ungroup()
# Add attributes
attr(res, "n") <- num_steps
attr(res, "num_walks") <- num_walks
attr(res, "mu") <- mu
attr(res, "sd") <- sd
attr(res, "drift") <- drift
attr(res, "fns") <- "random_normal_drift_walk"
attr(res, "dimensions") <- .dimensions
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.