computeGap2 | R Documentation |
Estimate the number of clusters thanks to the gap computation.
computeGap2(sim, Kmax)
sim |
similarity matrix. |
Kmax |
maximal number of clusters. |
computeGap2 returns an estimated number of clusters
The function returns a list containing:
val |
vector containing the eigenvalues of the similarity matrix. |
gap |
vector containing gap values between two successive eigenvalues. |
Kmax |
estimated number of clusters. |
dat <- rbind(matrix(rnorm(100, mean = 0, sd = 0.3), ncol = 2),
matrix(rnorm(100, mean = 2, sd = 0.3), ncol = 2),
matrix(rnorm(100, mean = 4, sd = 0.3), ncol = 2))
sim <- computeGaussianSimilarity(dat, 1)
res <- computeGap2(sim, Kmax = 20)
plot(res$val[1:20], type = "o", ann = FALSE, axes = FALSE)
abline(v = res$Kmax, col = "darkred")
abline(h = res$val[res$Kmax], col = "darkred")
axis(side = 1, at = c(seq(0,20,by=5), res$Kmax),
labels = c(seq(0,20,by=5), res$Kmax), cex.axis = .7)
axis(side = 2)
title("Automatic estimation of number of clusters - Gap method")
mtext("Number of clusters", side = 1, line = 3)
mtext("Eigenvalue", side = 2, line = 3)
box()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.