computeUnSupervised | R Documentation |
Perform unsupervised clustering, dealing with the number of clusters K, automatically or not.
computeUnSupervised(
data.sample,
K = 0,
method.name = "K-means",
pca = FALSE,
pca.nb.dims = 0,
spec = FALSE,
use.sampling = FALSE,
sampling.size.max = 0,
scaling = FALSE,
RclusTool.env = initParameters(),
echo = FALSE
)
data.sample |
list containing features, profiles and clustering results. |
K |
number of clusters. If K=0 (default), this number is automatically computed thanks to the Elbow method. |
method.name |
character vector specifying the constrained algorithm to use. Must be 'K-means' (default), 'EM' (Expectation-Maximization), 'Spectral', 'HC' (Hierarchical Clustering) or 'PAM' (Partitioning Around Medoids). |
pca |
boolean: if TRUE, Principal Components Analysis is applied to reduce the data space. |
pca.nb.dims |
number of principal components kept. If pca.nb.dims=0, this number is computed automatically. |
spec |
boolean: if TRUE, spectral embedding is applied to reduce the data space. |
use.sampling |
boolean: if FALSE (default), data sampling is not used. |
sampling.size.max |
numeric: maximal size of the sampling set. |
scaling |
boolean: if TRUE, scaling is applied. |
RclusTool.env |
environment in which all global parameters, raw data and results are stored. |
echo |
boolean: if FALSE (default), no description printed in the console. |
computeUnSupervised performs unsupervised clustering, dealing with the number of clusters K, automatically or not
data.sample list containing features, profiles and updated clustering results (with vector of labels and clusters summaries).
computeKmeans
, computeEM
, spectralClustering
, computePcaSample
, computeSpectralEmbeddingSample
dat <- rbind(matrix(rnorm(100, mean = 0, sd = 0.3), ncol = 2),
matrix(rnorm(100, mean = 2, sd = 0.3), ncol = 2),
matrix(rnorm(100, mean = 4, sd = 0.3), ncol = 2))
tf <- tempfile()
write.table(dat, tf, sep=",", dec=".")
x <- importSample(file.features=tf)
x <- computeUnSupervised(x, K=0, pca=TRUE, echo=TRUE)
label <- x$clustering[["K-means_pca"]]$label
plot(dat[,1], dat[,2], type = "p", xlab = "x", ylab = "y",
col = label, main = "K-means clustering")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.