ProbEPD | R Documentation |
Computes estimates of a small exceedance probability P(X>q)
or large return period 1/P(X>q)
using the parameters from the EPD fit.
ProbEPD(data, q, gamma, kappa, tau, plot = FALSE, add = FALSE,
main = "Estimates of small exceedance probability", ...)
ReturnEPD(data, q, gamma, kappa, tau, plot = FALSE, add = FALSE,
main = "Estimates of large return period", ...)
data |
Vector of |
q |
The used large quantile (we estimate |
gamma |
Vector of |
kappa |
Vector of |
tau |
Vector of |
plot |
Logical indicating if the estimates should be plotted as a function of |
add |
Logical indicating if the estimates should be added to an existing plot, default is |
main |
Title for the plot, default is |
... |
Additional arguments for the |
See Section 4.2.1 of Albrecher et al. (2017) for more details.
A list with following components:
k |
Vector of the values of the tail parameter |
P |
Vector of the corresponding probability estimates, only returned for |
R |
Vector of the corresponding estimates for the return period, only returned for |
q |
The used large quantile. |
Tom Reynkens
Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.
Beirlant, J., Joossens, E. and Segers, J. (2009). "Second-Order Refined Peaks-Over-Threshold Modelling for Heavy-Tailed Distributions." Journal of Statistical Planning and Inference, 139, 2800–2815.
EPD
, Prob
data(secura)
# EPD estimates for the EVI
epd <- EPD(secura$size, plot=TRUE)
# Compute exceedance probabilities
q <- 10^7
ProbEPD(secura$size, q=q, gamma=epd$gamma, kappa=epd$kappa, tau=epd$tau, plot=TRUE)
# Compute return periods
ReturnEPD(secura$size, q=q, gamma=epd$gamma, kappa=epd$kappa, tau=epd$tau,
plot=TRUE, ylim=c(0,10^4))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.