Quant.2oQV | R Documentation |
Compute second order refined Weissman estimator of extreme quantiles Q(1-p)
using the quantile view.
Quant.2oQV(data, gamma, b, beta, p, plot = FALSE, add = FALSE,
main = "Estimates of extreme quantile", ...)
Weissman.q.2oQV(data, gamma, b, beta, p, plot = FALSE, add = FALSE,
main = "Estimates of extreme quantile", ...)
data |
Vector of |
gamma |
Vector of |
b |
Vector of |
beta |
Vector of |
p |
The exceedance probability of the quantile (we estimate |
plot |
Logical indicating if the estimates should be plotted as a function of |
add |
Logical indicating if the estimates should be added to an existing plot, default is |
main |
Title for the plot, default is |
... |
Additional arguments for the |
See Section 4.2.1 of Albrecher et al. (2017) for more details.
Weissman.q.2oQV
is the same function but with a different name for compatibility with the old S-Plus
code.
A list with following components:
k |
Vector of the values of the tail parameter |
Q |
Vector of the corresponding quantile estimates. |
p |
The used exceedance probability. |
Tom Reynkens based on S-Plus
code from Yuri Goegebeur.
Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.
Beirlant J., Goegebeur Y., Segers, J. and Teugels, J. (2004). Statistics of Extremes: Theory and Applications, Wiley Series in Probability, Wiley, Chichester.
Quant
, Hill.2oQV
data(soa)
# Look at last 500 observations of SOA data
SOAdata <- sort(soa$size)[length(soa$size)-(0:499)]
# Hill estimator
H <- Hill(SOAdata)
# Bias-reduced estimator (QV)
H_QV <- Hill.2oQV(SOAdata)
# Exceedance probability
p <- 10^(-5)
# Weissman estimator
Quant(SOAdata, gamma=H$gamma, p=p, plot=TRUE)
# Second order Weissman estimator (QV)
Quant.2oQV(SOAdata, gamma=H_QV$gamma, beta=H_QV$beta, b=H_QV$b, p=p,
add=TRUE, lty=2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.