| QuantGH | R Documentation | 
Compute estimates of an extreme quantile Q(1-p) using generalised Hill estimates of the EVI.
QuantGH(data, gamma, p, plot = FALSE, add = FALSE, 
        main = "Estimates of extreme quantile", ...)
| data | Vector of  | 
| gamma | Vector of  | 
| p | The exceedance probability of the quantile (we estimate  | 
| plot | Logical indicating if the estimates should be plotted as a function of  | 
| add | Logical indicating if the estimates should be added to an existing plot, default is  | 
| main | Title for the plot, default is  | 
| ... | Additional arguments for the  | 
See Section 4.2.2 of Albrecher et al. (2017) for more details.
A list with following components:
| k | Vector of the values of the tail parameter  | 
| Q | Vector of the corresponding quantile estimates. | 
| p | The used exceedance probability. | 
Tom Reynkens.
Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.
Beirlant J., Goegebeur Y., Segers, J. and Teugels, J. (2004). Statistics of Extremes: Theory and Applications, Wiley Series in Probability, Wiley, Chichester.
Beirlant, J., Vynckier, P. and Teugels, J.L. (1996). "Excess Function and Estimation of the Extreme-value Index". Bernoulli, 2, 293–318.
ProbGH, genHill, QuantMOM, Quant
data(soa)
# Look at last 500 observations of SOA data
SOAdata <- sort(soa$size)[length(soa$size)-(0:499)]
# Hill estimator
H <- Hill(SOAdata)
# Generalised Hill estimator
gH <- genHill(SOAdata, H$gamma)
# Large quantile
p <- 10^(-5)
QuantGH(SOAdata, p=p, gamma=gH$gamma, plot=TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.