QuantGPD | R Documentation |
Computes estimates of an extreme quantile Q(1-p)
using the GPD fit for the peaks over a threshold.
QuantGPD(data, gamma, sigma, p, plot = FALSE, add = FALSE,
main = "Estimates of extreme quantile", ...)
data |
Vector of |
gamma |
Vector of |
sigma |
Vector of |
p |
The exceedance probability of the quantile (we estimate |
plot |
Logical indicating if the estimates should be plotted as a function of |
add |
Logical indicating if the estimates should be added to an existing plot, default is |
main |
Title for the plot, default is |
... |
Additional arguments for the |
See Section 4.2.2 in Albrecher et al. (2017) for more details.
A list with following components:
k |
Vector of the values of the tail parameter |
Q |
Vector of the corresponding quantile estimates. |
p |
The used exceedance probability. |
Tom Reynkens.
Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.
Beirlant J., Goegebeur Y., Segers, J. and Teugels, J. (2004). Statistics of Extremes: Theory and Applications, Wiley Series in Probability, Wiley, Chichester.
ProbGPD
, GPDmle
, Quant
data(soa)
# Look at last 500 observations of SOA data
SOAdata <- sort(soa$size)[length(soa$size)-(0:499)]
# GPD-ML estimator
pot <- GPDmle(SOAdata)
# Large quantile
p <- 10^(-5)
QuantGPD(SOAdata, p=p, gamma=pot$gamma, sigma=pot$sigma, plot=TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.