VaR | R Documentation |
Compute Value-at-Risk (VaR_{1-p}=Q(1-p)
) of the fitted spliced distribution.
VaR(p, splicefit)
p |
The exceedance probability (we estimate |
splicefit |
A |
See Reynkens et al. (2017) and Section 4.6 of Albrecher et al. (2017) for details.
Note that VaR(p, splicefit)
corresponds to qSplice(p, splicefit, lower.tail = FALSE)
.
Vector of quantiles VaR_{1-p}=Q(1-p)
.
Tom Reynkens with R
code from Roel Verbelen for the mixed Erlang quantiles.
Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.
Reynkens, T., Verbelen, R., Beirlant, J. and Antonio, K. (2017). "Modelling Censored Losses Using Splicing: a Global Fit Strategy With Mixed Erlang and Extreme Value Distributions". Insurance: Mathematics and Economics, 77, 65–77.
Verbelen, R., Gong, L., Antonio, K., Badescu, A. and Lin, S. (2015). "Fitting Mixtures of Erlangs to Censored and Truncated Data Using the EM Algorithm." Astin Bulletin, 45, 729–758
qSplice
, CTE
, SpliceFit
, SpliceFitPareto
, SpliceFiticPareto
, SpliceFitGPD
## Not run:
# Pareto random sample
X <- rpareto(1000, shape = 2)
# Splice ME and Pareto
splicefit <- SpliceFitPareto(X, 0.6)
p <- seq(0,1,0.01)
# Plot of quantiles
plot(p, qSplice(p, splicefit), type="l", xlab="p", ylab="Q(p)")
# Plot of VaR
plot(p, VaR(p, splicefit), type="l", xlab="p", ylab=bquote(VaR[1-p]))
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.