| stdf | R Documentation | 
Non-parametric estimators of the stable tail dependence function (STDF): \hat{l}_k(x) and \tilde{l}_k(x).
stdf(x, k, X, alpha = 0.5)
stdf2(x, k, X)
x | 
 A   | 
k | 
 Value of the tail index   | 
X | 
 A data matrix of dimensions   | 
alpha | 
 The parameter   | 
The stable tail dependence function in x can be estimated by
 \hat{l}_k(x) = 1/k \sum_{i=1}^n 1_{\{\exists j\in\{1,\ldots, d\}: \hat{F}_j(X_{i,j})>1-k/n x_j\}}
with
\hat{F}_j(X_{i,j})=(R_{i,j}-\alpha)/n
where R_{i,j} is the rank of X_{i,j} among the n observations in the j-th dimension:
R_{i,j}=\sum_{m=1}^n 1_{\{X_{m,j}\le X_{i,j}\}}.
This estimator is implemented in stdf.
The second estimator is given by
 \tilde{l}_k(x) = 1/k \sum_{i=1}^n 1_{\{X_{i,1}\ge X^{(1)}_{n-[kx_1]+1,n} or \ldots or X_{i,d}\ge X^{(d)}_{n-[kx_d]+1,n}\}}
where X_{i,n}^{(j)} is the i-th smallest observation in the j-th dimension.
This estimator is implemented in stdf2.
See Section 4.5 of Beirlant et al. (2016) for more details.
stdf returns the estimate \hat{l}_k(x) and stdf2 returns the estimate \tilde{l}_k(x).
Tom Reynkens
Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.
Beirlant J., Goegebeur Y., Segers, J. and Teugels, J. (2004). Statistics of Extremes: Theory and Applications, Wiley Series in Probability, Wiley, Chichester.
# Generate data matrix
X <- cbind(rpareto(100,2), rpareto(100,3))
# Tail index
k <- 20
# Point to evaluate the STDF in
x <- c(2,3)
# First estimate
stdf(x, k, X)
# Second estimate
stdf2(x, k, X)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.