View source: R/TruncationMLE.R
trEndpointMLE | R Documentation |
Estimator of endpoint using truncated ML estimates.
trEndpointMLE(data, gamma, tau, plot = FALSE, add = FALSE,
main = "Estimates of endpoint", ...)
data |
Vector of |
gamma |
Vector of |
tau |
Vector of |
plot |
Logical indicating if the estimates of |
add |
Logical indicating if the estimates of |
main |
Title for the plot, default is |
... |
Additional arguments for the |
The endpoint is estimated as
\hat{T}_{k} = X_{n-k,n} + 1/\hat{\tau}_k[( (1-1/k)/((1+ \hat{\tau}_k (X_{n,n}-X_{n-k,n}))^{-1/\hat{\xi}_k}-1/k))^{\hat{\xi}_k} -1]
with \hat{\gamma}_k
and \hat{\tau}_k
the truncated ML estimates for \gamma
and \tau
.
See Beirlant et al. (2017) for more details.
A list with following components:
k |
Vector of the values of the tail parameter |
Tk |
Vector of the corresponding estimates for the endpoint |
Tom Reynkens.
Beirlant, J., Fraga Alves, M. I. and Reynkens, T. (2017). "Fitting Tails Affected by Truncation". Electronic Journal of Statistics, 11(1), 2026–2065.
trMLE
, trDTMLE
, trProbMLE
, trQuantMLE
, trTestMLE
, trEndpoint
# Sample from GPD truncated at 99% quantile
gamma <- 0.5
sigma <- 1.5
X <- rtgpd(n=250, gamma=gamma, sigma=sigma, endpoint=qgpd(0.99, gamma=gamma, sigma=sigma))
# Truncated ML estimator
trmle <- trMLE(X, plot=TRUE, ylim=c(0,2))
# Endpoint
trEndpointMLE(X, gamma=trmle$gamma, tau=trmle$tau, plot=TRUE, ylim=c(0,50))
abline(h=qgpd(0.99, gamma=gamma, sigma=sigma), lty=2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.