Nothing
#' This function summarizes the stan fit according to the regddm model structure
#' Making the results more tidy and easier to use.
#' @keywords internal
#' @noRd
summary_results = function(stan_fit,data1, ...){
# use default rstan function to summary the results
res = as.data.frame(rstan::summary(stan_fit, ...)$summary)
statistics_list = colnames(res)
res$variable = rownames(res)
res = dplyr::tibble(res)
res = dplyr::select(res, "variable", dplyr::everything())
# This local function extracts a certain statistics of all subjects' DDM
# parameters.
extract_subject_ddm = function(statistics){
subject_ddm =
dplyr::filter(res, stringr::str_detect(.data$variable, "^[atzv]_.+\\[\\d+\\]$"))
subject_ddm =
dplyr::mutate(
subject_ddm,
variable = stringr::str_remove(.data$variable, "\\[\\d+\\]"),
id = rep(data1$id,times = nrow(subject_ddm)/nrow(data1))
)
subject_ddm =
dplyr::select(subject_ddm, "id", !!rlang::sym(statistics), "variable")
subject_ddm =
tidyr::pivot_wider(subject_ddm, names_from = .data$variable, values_from = !!rlang::sym(statistics))
return(subject_ddm)
}
# for regression coefficients
glm_coefficiets =
dplyr::filter(res, stringr::str_detect(.data$variable, "^beta_") | stringr::str_detect(.data$variable, "^sigma$"))
# for subject-level ddm parameters
subject_ddm_param = list()
for(statistic in statistics_list){
subject_ddm_param[[statistic]] = extract_subject_ddm(statistic)
}
# for group mean and sd of subjects' DDM parameters and covarites.
group_param = dplyr::filter(
res,
stringr::str_detect(.data$variable,"^(mu|sigma)_.+$")
)
# for estimated missing values
missing_value = dplyr::filter(
res,
stringr::str_detect(.data$variable,"^.+_mis.*$")
)
max_rhat = max(res$Rhat, na.rm = TRUE) # remove NaN. Some variables may be fixed
return(
list(
glm_coefficiets = glm_coefficiets, # GLM regression parameters
subject_ddm_param = subject_ddm_param, # ddm parameters of each subject
group_param = group_param, # group mean and SD of DDM parameters
missing_value = missing_value, # estimated missing covariates
max_rhat = max_rhat # maximum r-hat statistics measuring convergence
)
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.