Description Usage Arguments Details Value Author(s) References See Also Examples
mvf.musa
returns the mean value function for the Musa-Okumoto model.
1 |
theta0 |
parameter value for |
theta1 |
parameter value for |
t |
time between failure data |
This function gives the values of the mean value function for the Musa-Okumoto model, this is written as
μ(t) = θ_0 \log(θ_1 t + 1).
The mean value function for the Musa-Okumoto model.
Andreas Wittmann andreas\_wittmann@gmx.de
J.D. Musa, A. Iannino, and K. Okumoto. Software Reliability: Measurement, Prediction, Application. McGraw-Hill, 1987.
Michael R. Lyu. Handbook of Software Realibility Engineering. IEEE Computer Society Press, 1996. http://www.cse.cuhk.edu.hk/~lyu/book/reliability/
musa.okumoto
, musa.okumoto.plot
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | # time between-failure-data from DACS Software Reliability Dataset
# homepage, see system code 1. Number of failures is 136.
t <- c(3, 30, 113, 81, 115, 9, 2, 20, 20, 15, 138, 50, 77, 24,
108, 88, 670, 120, 26, 114, 325, 55, 242, 68, 422, 180,
10, 1146, 600, 15, 36, 4, 0, 8, 227, 65, 176, 58, 457,
300, 97, 263, 452, 255, 197, 193, 6, 79, 816, 1351, 148,
21, 233, 134, 357, 193, 236, 31, 369, 748, 0, 232, 330,
365, 1222, 543, 10, 16, 529, 379, 44, 129, 810, 290, 300,
529, 281, 160, 828, 1011, 445, 296, 1755, 1064, 1783,
860, 983, 707, 33, 868, 724, 2323, 2930, 1461, 843, 12,
261, 1800, 865, 1435, 30, 143, 108, 0, 3110, 1247, 943,
700, 875, 245, 729, 1897, 447, 386, 446, 122, 990, 948,
1082, 22, 75, 482, 5509, 100, 10, 1071, 371, 790, 6150,
3321, 1045, 648, 5485, 1160, 1864, 4116)
musa.par1 <- musa.okumoto(t)$theta0
musa.par2 <- musa.okumoto(t)$theta1
mvf.musa(musa.par1, musa.par2, t)
|
[1] 16.55091 40.99884 56.54635 52.61259 56.75399 27.49070 13.11624
[8] 36.34890 36.34890 33.10221 58.91362 46.94269 52.01550 38.43056
[15] 56.01086 53.59063 77.70964 57.25784 39.34942 56.65062 69.09098
[22] 48.05932 65.58278 50.55171 72.20088 62.06588 28.62864 84.11075
[29] 76.39424 33.10221 43.11127 19.21506 0.00000 26.23278 64.82206
[36] 50.02099 61.79907 48.68238 73.15002 68.13838 54.74075 66.57240
[43] 73.01896 66.20501 63.13767 62.89400 23.23228 52.31778 80.06014
[50] 86.07399 59.74308 36.90432 65.13219 58.56500 70.20893 62.89400
[57] 65.28428 41.37790 70.60257 79.02261 0.00000 65.08105 69.27271
[64] 70.47279 84.87674 75.20454 28.62864 33.82602 74.89325 70.92097
[71] 45.44832 58.11441 79.97213 67.73498 68.13838 74.89325 67.35990
[78] 60.66787 80.23423 82.61569 72.83302 67.97865 89.19557 83.22515
[85] 89.38444 80.68642 82.28070 78.35049 42.10171 80.79684 78.63378
[92] 92.54158 95.31215 87.00789 80.44833 30.62314 66.48161 89.49768
[99] 80.75555 86.79365 40.99884 59.33555 56.01086 0.00000 96.02374
[106] 85.11834 81.78522 78.23186 80.89263 65.72928 78.71584 90.12400
[113] 72.88644 71.13890 72.85976 57.45357 82.36533 81.84829 83.42525
[120] 37.43504 51.70537 73.78456 102.84850 55.10076 28.62864 83.30336
[127] 70.66693 79.67401 104.16243 96.80723 83.01022 77.31163 102.79638
[134] 84.25559 89.91459 99.36891
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.