Description Usage Arguments Details Value Author(s) References See Also Examples
mvf.mor
returns the mean value function for the Moranda-Geometric model.
1 |
D |
parameter value for |
theta |
parameter value for |
t |
time between failure data |
This function gives the values of the mean value function for the Moranda-Geometric model, this is written as
μ(t) = \frac{1}{θ} \log\{[D θ \exp(θ)] t + 1\}.
Further there is a verifying if the parameter theta
satisfy the assumptions of
the Moranda-Geometric model. So the paramter theta
have to be larger than zero, in
equation θ > 0.
The mean value function for the Moranda-Geometric model.
Andreas Wittmann andreas\_wittmann@gmx.de
J.D. Musa, A. Iannino, and K. Okumoto. Software Reliability: Measurement, Prediction, Application. McGraw-Hill, 1987.
Michael R. Lyu. Handbook of Software Realibility Engineering. IEEE Computer Society Press, 1996. http://www.cse.cuhk.edu.hk/~lyu/book/reliability/
moranda.geometric
, moranda.geometric.plot
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | # time between-failure-data from DACS Software Reliability Dataset
# homepage, see system code 1. Number of failures is 136.
t <- c(3, 30, 113, 81, 115, 9, 2, 20, 20, 15, 138, 50, 77, 24,
108, 88, 670, 120, 26, 114, 325, 55, 242, 68, 422, 180,
10, 1146, 600, 15, 36, 4, 0, 8, 227, 65, 176, 58, 457,
300, 97, 263, 452, 255, 197, 193, 6, 79, 816, 1351, 148,
21, 233, 134, 357, 193, 236, 31, 369, 748, 0, 232, 330,
365, 1222, 543, 10, 16, 529, 379, 44, 129, 810, 290, 300,
529, 281, 160, 828, 1011, 445, 296, 1755, 1064, 1783,
860, 983, 707, 33, 868, 724, 2323, 2930, 1461, 843, 12,
261, 1800, 865, 1435, 30, 143, 108, 0, 3110, 1247, 943,
700, 875, 245, 729, 1897, 447, 386, 446, 122, 990, 948,
1082, 22, 75, 482, 5509, 100, 10, 1071, 371, 790, 6150,
3321, 1045, 648, 5485, 1160, 1864, 4116)
mor.par1 <- moranda.geometric(t)$D
mor.par2 <- moranda.geometric(t)$theta
mvf.mor(mor.par1, mor.par2, t)
|
[1] 0.03403132 0.33908905 1.26333325 0.90938287 1.28535726 0.10201204
[7] 0.02269058 0.22636071 0.22636071 0.16988384 1.53781363 0.56364969
[13] 0.86493038 0.27148805 1.20822310 0.98706264 6.99301355 1.34036722
[19] 0.29403371 1.27434669 3.53638963 0.61960433 2.66093818 0.76474140
[25] 4.53709291 1.99497394 0.11333156 11.34168234 6.31411158 0.16988384
[31] 0.40658234 0.04536902 0.00000000 0.09068950 2.50077536 0.73129234
[37] 1.95164682 0.65314167 4.89244487 3.27459839 1.08672777 2.88415358
[43] 4.84186246 2.79925779 2.17862137 2.13548179 0.06803532 0.88716246
[49] 8.37493252 13.08522221 1.64710970 0.23764705 2.56491318 1.49401612
[55] 3.86913865 2.13548179 2.59694571 0.35034540 3.99324870 7.73690374
[61] 0.00000000 2.55423028 3.58855428 3.95191908 11.99646835 5.75313915
[67] 0.11333156 0.18118524 5.61421247 4.09639668 0.49640641 1.43920547
[73] 8.31902085 3.16942717 3.27459839 5.61421247 3.07454929 1.77789380
[79] 8.48653495 10.15301587 4.77094545 3.23256123 16.32444159 10.62366257
[85] 16.54002310 8.78271183 9.90224500 7.34751373 0.37284914 8.85643360
[91] 7.50940275 20.49644225 24.54279869 13.99201132 8.62562576 0.13596153
[97] 2.86294558 16.67037858 8.82880297 13.77942467 0.33908905 1.59249692
[103] 1.20822310 0.00000000 25.67199126 12.20966482 9.54140575 7.28067328
[109] 8.92083506 2.69289821 7.55689966 17.40659307 4.79121957 4.16845111
[115] 4.78108372 1.36235121 9.96507704 9.58667912 10.78232260 0.24893039
[121] 0.84268664 5.14445482 38.40271512 1.11989743 0.11333156 10.68543433
[127] 4.01389840 8.13211379 41.24329706 26.95843411 10.45554085 6.78081453
[133] 38.29256917 11.46306383 17.15756179 31.48219622
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.