fweibull | R Documentation |
Fast Maximum Likelihood estimation of the classical two parameters Weibull distribution.
fweibull(x, info.observed = TRUE, scaleData = TRUE, cov = TRUE,
check.loglik = FALSE)
x |
Sample vector to be fitted. Should contain only positive non-NA values. |
info.observed |
Should the observed information matrix be used or the expected one be used? |
scaleData |
Should the data be scaled before estimation? If |
cov |
Should the covariance of estimates be computed? |
check.loglik |
If |
The ML estimates are obtained thanks to a reparameterisation with
\eta = scale^{1/shape}
in place of
shape
. This allows the maximisation of a one-dimensional
likelihood L
since the \eta
parameter can be
concentrated out of L
. This also allows the determination of
the expected information matrix for
[shape,\,\eta]
rather than the usual
observed information.
A list
estimate |
Parameter ML estimates. |
sd |
The (asymptotic) standard deviation for estimate. |
cov |
The (asymptotic) covariance matrix computed from theoretical or observed Information matrix. |
eta |
The estimated value for eta. |
The default value of info.observed
was set to TRUE
from
version 3.0-1
because standard deviations obtained with this
choice are usually better.
Yves Deville
weibplot
for Weibull plots.
n <- 1000
set.seed(1234)
shape <- 2 * runif(1)
x <- 100 * rweibull(n, shape = 0.8, scale = 1)
res <- fweibull(x)
## compare with MASS
if (require(MASS)) {
res2 <- fitdistr(x , "weibull")
est <- cbind(res$estimate, res2$estimate)
colnames(est) <- c("Renext", "MASS")
loglik <- c(res$loglik, res2$loglik)
est <- rbind(est, loglik)
est
}
## Weibull plot
weibplot(x,
shape = c(res$estimate["shape"], res2$estimate["shape"]),
scale = c(res$estimate["scale"], res2$estimate["scale"]),
labels = c("Renext 'fweibull'", "MASS 'fitdistr'"),
mono = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.