View source: R/processBranchData.R
processBranchData | R Documentation |
processBranchData
processBranchData(
tree,
dat,
burnin = 0.25,
parnames = c("avg_lambda", "avg_mu", "num_shifts"),
summary = "median",
net_div = FALSE
)
tree |
(treedata object; no default) a phylogenetic tree in the treedata format, or a list of lists of a single tree data object, such as the output of readTrees(). |
dat |
(data.frame or list; no default) a data frame, or a list (of length 1) of a data frame, with branch specific data, such as the output of readTrace(). |
burnin |
(numeric; 0.25) fraction of the markov-chain to discard |
parnames |
(character vector; c("avg_lambda", "avg_mu", "num_shifts")) Names of parameters to process |
summary |
(character; "median") function to summarize the continuous parameter. Typically mean or median |
net_div |
(logical; FALSE) Calculate net diversification? |
a treedata file with attached branch-specific data
# download the example dataset to working directory
url_rates <-
"https://revbayes.github.io/tutorials/intro/data/primates_BDS_rates.log"
dest_path_rates <- "primates_BDS_rates.log"
download.file(url_rates, dest_path_rates)
url_tree <-
"https://revbayes.github.io/tutorials/divrate/data/primates_tree.nex"
dest_path_tree <- "primates_tree.nex"
download.file(url_tree, dest_path_tree)
# to run on your own data, change this to the path to your data file
treefile <- dest_path_tree
logfile <- dest_path_rates
branch_data <- readTrace(logfile)
tree <- readTrees(paths = treefile)
annotated_tree <- processBranchData(tree, branch_data, summary = "median")
# you can plot this output
p <- plotTree(tree = annotated_tree,
node_age_bars = FALSE,
node_pp = FALSE,
tip_labels = FALSE,
color_branch_by = "avg_lambda",
line_width = 0.8) +
ggplot2::theme(legend.position=c(.1, .9));p
# remove files
# WARNING: only run for example dataset!
# otherwise you might delete your data!
file.remove(dest_path_tree, dest_path_rates)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.