Distance matrix - Sum of all pairwise distances in a distance matrix | R Documentation |
Distance matrix - Sum of all pairwise distances in a distance matrix.
Dist(x, method = "euclidean", square = FALSE, p = 0,vector = FALSE)
total.dist(x, method = "euclidean", square = FALSE, p = 0)
vecdist(x)
x |
A matrix with data. The distances will be calculated between pairs of rows. In the case of vecdist this is a vector. For the haversine distance it must be a matrix with two columns, the first column is the latitude and the second the longitude (in radians). |
method |
See details for the available methods. |
square |
If you choose "euclidean" or "hellinger" as the method, then you can have the option to return the squared Euclidean distances by setting this argument to TRUE. |
p |
This is for the the Minkowski, the power of the metric. |
vector |
For return a vector instead a matrix. |
The distance matrix is compute with an extra argument for the Euclidean distances. The "kullback_leibler" refers to the symmetric Kullback-Leibler divergence.
euclidean : \sqrt( \sum | P_i - Q_i |^2)
manhattan : \sum | P_i - Q_i |
minimum : \min | P_i - Q_i |
maximum : \max | P_i - Q_i |
minkowski : ( \sum | P_i - Q_i |^p)^(1/p)
bhattacharyya : - ln \sum \sqrt(P_i * Q_i)
hellinger : 2 * \sqrt( 1 - \sum \sqrt(P_i * Q_i))
kullback_leibler : \sum P_i * log(P_i / Q_i)
jensen_shannon : 0.5 * ( \sum P_i * log(2 * P_i / P_i + Q_i) + \sum Q_i * log(2 * Q_i / P_i + Q_i))
haversine : 2 * R * \arcsin(\sqrt(\sin((lat_2 - lat_1)/2)^2 + \cos(lat_1) * \cos(lat_2) * \sin((lon_2 - lon_1)/2)^2))
canberra : \sum | P_i - Q_i | / (P_i + Q_i)
chi_square X
^2 : \sum ( (P_i - Q_i )^2 / (P_i + Q_i) )
soergel : \sum | P_i - Q_i | / \sum \max(P_i , Q_i)
sorensen : \sum | P_i - Q_i | / \sum (P_i + Q_i)
cosine : \sum (P_i * Q_i) / \sqrt(\sum P_i^2) * \sqrt(\sum Q_i^2)
wave_hedges : \sum | P_i - Q_i | / \max(P_i , Q_i)
motyka : \sum \min(P_i , Q_i) / (P_i + Q_i)
harmonic_mean : 2 * \sum (P_i * Q_i) / (P_i + Q_i)
jeffries_matusita : \sqrt( 2 - 2 * \sum \sqrt(P_i * Q_i))
gower : 1/d * \sum | P_i - Q_i |
kulczynski : 1 / \sum | P_i - Q_i | / \sum \min(P_i , Q_i)
A square matrix with the pairwise distances.
Manos Papadakis.
R implementation and documentation: Manos Papadakis <papadakm95@gmail.com>.
Mardia K. V., Kent J. T. and Bibby J. M. (1979). Multivariate Analysis. Academic Press.
dista, colMedians
x <- matrix(rnorm(50 * 10), ncol = 10)
a1 <- Dist(x)
a2 <- as.matrix( dist(x) )
x<-a1<-a2<-NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.