gammamle: MLE of continuous univariate distributions defined on the...

View source: R/positive_mle.R View source: R/gammamle.R

MLE of continuous univariate distributions defined on the positive lineR Documentation

MLE of continuous univariate distributions defined on the positive line

Description

MLE of continuous univariate distributions defined on the positive line.

Usage

gammamle(x, tol = 1e-09) 
chisq.mle(x, tol = 1e-09)
weibull.mle(x, tol = 1e-09, maxiters = 100)
lomax.mle(x, tol = 1e-09)
foldnorm.mle(x, tol = 1e-09)
betaprime.mle(x, tol = 1e-09)
logcauchy.mle(x, tol = 1e-09)
loglogistic.mle(x, tol = 1e-09)
halfnorm.mle(x)
invgauss.mle(x)
lognorm.mle(x)
pareto.mle(x)
expmle(x)
exp2.mle(x)
maxboltz.mle(x)
rayleigh.mle(x)
normlog.mle(x)
lindley.mle(x)

Arguments

x

A vector with positive valued data (zeros are not allowed).

tol

The tolerance level up to which the maximisation stops; set to 1e-09 by default.

maxiters

The maximum number of iterations the Newton-Raphson will perform.

Details

Instead of maximising the log-likelihood via a numerical optimiser we have used a Newton-Raphson algorithm which is faster. See wikipedia for the equations to be solved. For the t distribution we need the degrees of freedom and estimate the location and scatter parameters. If you want to to fit an inverse gamma distribution simply do "gamma.mle(1/x)". The log-likelihood and the parameters are for the inverse gamma.

The "normlog.mle" is simply the normal distribution where all values are positive. Note, this is not log-normal. It is the normal with a log link. Similarly to the inverse gaussian distribution where the mean is an exponentiated. This comes from the GLM theory.

Value

Usually a list with three elements, but this is not for all cases.

iters

The number of iterations required for the Newton-Raphson to converge.

loglik

The value of the maximised log-likelihood.

param

The vector of the parameters.

Author(s)

Michail Tsagris

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.

References

Kalimuthu Krishnamoorthy, Meesook Lee and Wang Xiao (2015). Likelihood ratio tests for comparing several gamma distributions. Environmetrics, 26(8):571-583.

N.L. Johnson, S. Kotz and N. Balakrishnan (1994). Continuous Univariate Distributions, Volume 1 (2nd Edition).

N.L. Johnson, S. Kotz a nd N. Balakrishnan (1970). Distributions in statistics: continuous univariate distributions, Volume 2.

Tsagris M., Beneki C. and Hassani H. (2014). On the folded normal distribution. Mathematics, 2(1):12-28.

Sharma V. K., Singh S. K., Singh U. and Agiwal V. (2015). The inverse Lindley distribution: a stress-strength reliability model with application to head and neck cancer data. Journal of Industrial and Production Engineering, 32(3): 162-173.

You can also check the relevant wikipedia pages for these distributions.

See Also

zip.mle, normal.mle, beta.mle

Examples

x <- rgamma(100, 3, 4)
for (i in 1:20) gammamle(x)
## for (i in 1:20) fitdistr(x,"gamma")
#a <- glm(x ~ 1, gaussian(log) )
res<-normlog.mle(x)

Rfast documentation built on Nov. 9, 2023, 5:06 p.m.