Nothing
#' This function finds the power of various chi-square tests for continuous data
#' @param pnull function to find cdf under null hypothesis
#' @param ralt function to generate data under alternative hypothesis
#' @param param_alt vector of parameter values for distribution under alternative hypothesis
#' @param qnull =NA function to find quantiles under null hypothesis, if available
#' @param phat =function(x) -99, function to estimate parameters
#' @param w =function(x) -99, optional weight function
#' @param alpha =0.05, the level of the hypothesis test
#' @param Range =c(-99999, 99999) limits of possible observations, if any
#' @param B =1000 number of simulation runs to find power
#' @param nbins =c(50,10), number of bins for chi square tests
#' @param rate =0 rate of Poisson if sample size is random, 0 if sample size is fixed
#' @param minexpcount =5 minimal expected bin count required
#' @param ChiUsePhat =TRUE, if TRUE param is estimated parameters and no minimization is used
#' @return A numeric matrix of power values.
chi_power_cont = function(
pnull, ralt, param_alt, qnull=NA,
phat=function(x) -99, w=function(x) -99,
alpha=0.05, Range=c(-99999, 99999), B=1000,
nbins=c(50, 10), rate=0, minexpcount=5, ChiUsePhat=TRUE) {
pwr=matrix(0, length(param_alt), 8)
colnames(pwr) = c("ES-l-P", "ES-s-P", "EP-l-P", "EP-s-P",
"ES-l-L", "ES-s-L", "EP-l-L", "EP-s-L")
rownames(pwr) = param_alt
for(i in 1:length(param_alt)) {
for(j in 1:B) {
x = ralt(param_alt[i])
tmp = c(chi_test_cont(x, pnull, w, phat, qnull,
nbins, rate, Range, minexpcount, ChiUsePhat)[, 2])
pwr[i, ] = pwr[i, ] + ifelse(tmp<alpha, 1, 0)
}
pwr[i, ] = pwr[i, ]/B
}
pwr
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.