Nothing
#' This function finds the power of various chi-square tests for continuous data
#' @param pnull function to find cdf under null hypothesis
#' @param ralt function to generate data under alternative hypothesis
#' @param param_alt vector of parameter values for distribution under alternative hypothesis
#' @param phat =function(x) -99, routine to estimate parameters
#' @param alpha =0.05, the level of the hypothesis test
#' @param B =1000 number of simulation runs to find power
#' @param nbins =c(50,10), number of bins for chi square tests
#' @param rate =0 rate of Poisson if sample size is random, 0 if sample size is fixed
#' @param minexpcount =5 minimal expected bin count required
#' @param ChiUsePhat = TRUE, should chi square use minimum chi square method?
#' @return A numeric matrix of power values.
chi_power_disc = function(pnull, ralt, param_alt,
phat=function(x) -99, alpha=0.05, B=1000,
nbins=c(50, 10), rate=0, minexpcount=5,
ChiUsePhat=TRUE) {
pwr=matrix(0, length(param_alt), 4)
colnames(pwr) = c(c("l-P", "s-P", "l-L", "s-L"))
rownames(pwr) = param_alt
for(i in 1:length(param_alt)) {
x = ralt(param_alt[i])
allbins = make_bins_disc(x, pnull, phat, nbins=nbins, minexpcount=minexpcount)
for(j in 1:B) {
x = ralt(param_alt[i])
tmp = chi_test_disc(x, pnull, phat,
ChiUsePhat=ChiUsePhat, allbins=allbins)[, 2]
pwr[i, ] = pwr[i, ] + ifelse(tmp<alpha, 1, 0)
}
pwr[i, ] = pwr[i, ]/B
}
pwr
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.